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Abstract: This research aims to accelerate the realization of Climate Smart Agriculture (CSA) with a 
Circular Economy Perspective Approach. The research was conducted in Kopeng Village, Getasan 
District, Semarang Regency, Central Java. The sampling technique used in this research was the 
purposive sampling method to select research personnel. The first analytical method in this research is 
Mactor analysis. The second data analysis method used in this research is ANP (Analytic Network 
Process). The research results show that the strategy to accelerate the realization of Climate Smart 
Agriculture (CSA) using a circular economy perspective requires strong collaboration and synergy 
between stakeholders/actors. The stakeholders who have the strongest role and influence are organic 
farmers, research institutions, and universities. Efforts to realize climate-smart agriculture based on a 
circular economy have the main strategic objectives of increasing agricultural productivity amidst 
uncertain climate change and reducing farmers' dependence on the use of chemical inputs. The strategic 
priorities in realizing climate-smart agriculture based on a circular economy are selecting plant varieties 
that are resistant to extreme weather and improving water resource management.  

Keywords: Circular Economy, Climate Smart Agriculture (CSA), Mactor, ANP. 

 
1. Introduction  

Climate change, which is increasingly happening now, has reduced economic growth and increased 
income inequality, due to the potential for food insecurity, scarcity of water resources and population 
movement. Several nations, such as Indonesia, are confronted with the possibility of significant losses 
and heightened vulnerability, particularly in agriculture. Over time, this could undermine progress 
toward reaching the Sustainable Development Goals (SDGs) [1, 2] . 

Agriculture is a sector affected by climate change, but also a contributor to global warming [3]. 
Empirical evidence shows that of the 70% of GHG caused by human activities, 14% is contributed by the 
agricultural sector. In addition, pollution from pesticide residues and heavy metals in water and 
agricultural land is a serious problem facing the agricultural sector. Agricultural land contaminated 
with pesticide residues is dangerous for human and animal health [4]. Long-term heavy metal 
contamination will reduce soil fertility because it inhibits soil microbial activity, as well as reducing the 
soil's capacity to absorb nutritional elements and inhibit mineralization. On the other hand, the 
contribution to increased emissions from the agricultural sector comes from the use of chemical 
pesticides in Indonesia, which reached 1,597 tons per year. The low efficiency of using pesticides and 
chemical fertilizers has caused ecological damage and waste of resources [5]. 

Climate change can adversely affect biodiversity, natural resources, and environmental services, 
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leading to potential losses for the nation, communities, and individuals alike. Changes in the frequency 
and intensity of rainfall and significant increases in temperature also contribute to a decrease in 
agricultural productivity of between 5-20 percent [6, 7]. As in the majority of developing countries, 
agriculture plays an important role in the Indonesian economy. The agricultural sector in Indonesia 
contributes 13.28% of Gross Domestic Product (GDP) and is able to absorb a workforce of 38.7 million. 
In the agricultural sector, the increasing frequency of extreme events has led to the proliferation of pests 
and diseases. Thus, efforts to reduce and adapt to the risks of climate change are needed to maintain and 
increase food security in Indonesia. 

Problems arising from climate change and increasing agricultural sector activity over time result in 
a decline in environmental quality and sustainability [8]. The right approach is needed to be able to 
continue to support the economic system while preserving the surrounding environment. To address 
the potential negative effects of climate change on agriculture, one approach is the adoption of climate-
smart agriculture, commonly known as Climate Smart Agriculture (CSA) [9, 10]. The implementation 
of climate smart agriculture has three main pillars, namely productivity, adaptation and mitigation. By 
implementing climate smart agriculture, it is hoped that it can increase agricultural productivity, reduce 
GHG emissions and also increase environmental sustainability. 

In efforts to implement Climate Smart Agriculture (CSA), a circular economy approach can be used. 
This approach is intended to create clean and sustainable agriculture by utilizing waste as input for 
environmentally friendly agricultural production. The application of a circular economy can help 
farmers utilize surrounding waste to produce organic agricultural inputs to replace chemicals such as 
fertilizers, pesticides, insecticides and others. In this way, the negative impacts of the use of chemicals 
can be reduced and can help accelerate the realization of climate-smart agriculture. 

Kopeng Village, which is located in Semarang Regency, Central Java, has abundant agricultural 
potential because it is located on a mountain slope, so the agricultural land in this village is also very 
fertile. However, the climate change that is occurring has made farmers in Kopeng Village overwhelmed 
in the agricultural production process. Erratic weather and increasingly widespread pest attacks have 
caused agriculture in Kopeng Village to experience a decline in quality and productivity.Apart from 
having abundant agricultural potential, Kopeng Village also has very attractive tourism potential. There 
are many tourist attractions and other supporting aspects in Aini Village such as hotels, restaurants and 
others. This can be used as a source of waste for local farmers to support agricultural production 
facilities using circular economy principles. 

Research on strategies to accelerate the realization of Climate Smart Agriculture (CSA) using a 
Circular Economy (CE) perspective approach still faces several significant gaps, indicating an urgent 
need for further research and practical implementation [5, 11, 12]. One of the main gaps is the lack of 
empirical studies that test the real implementation of CSA and CE integration in the field. Most of the 
existing literature still focuses on theories and conceptual models without providing practical guidance 
that can be applied by farmers and agribusiness actors. Additionally, there are limitations in research 
that adapts CSA and CE strategies to specific local conditions, including geographic variations such as 
differences in climate, soil type, and traditional farming practices, as well as socio-economic factors such 
as farming scale and access to markets. This research aims to accelerate the realization of Climate Smart 
Agriculture (CSA) with a Circular Economy Perspective Approach. 
 

2. Methods 
The study was carried out in Kopeng Village, located in the Getasan District of Semarang Regency, 

Central Java. This location was chosen due to its significant agricultural potential and the high rate of 
agricultural land conversion. The research is planned to take place from April 2024 to December 2024. 
A purposive sampling method was employed to select the research participants. The initial analysis in 
this study uses the Mactor method, which offers an in-depth evaluation of the strategies and actions of 
various actors. The Mactor method (Alliance and Conflict Matrix: Tactics, Goals, and 
Recommendations) is based on the analysis of inter-actor dynamics and interactions. It aims to provide a 



1334 

 

 

Edelweiss Applied Science and Technology 
ISSN: 2576-8484 

Vol. 9, No. 1: 1332-1344, 2025 
DOI: 10.55214/25768484.v9i1.4531 
© 2025 by the author; licensee Learning Gate 

 

broad view of the key issues, expected actor strategies, power structures, and possible alliances or 
conflicts. The main goal of this method is to explore potential developments within the system under 
study, helping to build more organized and coherent future scenarios. In this research, the Mactor 
method will be used to analyze stakeholders’ preferences and their level of support for specific objectives 
[13]. Additionally, it will assess how much support each stakeholder provides for particular goals and 
groups. The Mactor method will also be utilized to identify the actors involved in implementing 
climate-smart agriculture with a circular economy approach. Once the key actors are identified, they will 
be categorized according to their roles, such as primary, key, or supporting actors. Moreover, the actor 
analysis will be used to examine the relationships and interactions between these different stakeholders. 

Godet [14] The MACTOR technique is based on three primary inputs presented in matrix form. 
These inputs represent the 'relationships of influence' between actors. For example, the influence of 
actor A on actor D can be direct (from A to D) or indirect, through intermediate actors B and C. The 
MACTOR model uses a position matrix, referred to as 1MAO (Matrix Actor Objective) and 2MAO, 
which incorporates the Salience variable representing the actor-objective relationship. The third input is 
the MID (Matrix of Direct Influence), which represents the influence variables. In the software, users 
only need to input the MID matrix, 1MAO, and 2MAO matrices, which are then processed through a 
mathematical algorithm. Using the MID matrix, MACTOR calculates both direct and indirect effects of 
one actor on another, as shown in Figure (XX). This is represented in the MIDI matrix (Matrix of 
Indirect and Direct Influence), where the influence from A to B is computed using a specific formula: 

𝑀𝐼𝐷𝐼𝐴→𝐵 = 𝑀𝐼𝐷𝐴→𝐵 + ∑ [min(𝑀𝐼𝐷𝐴→𝐶 , 𝑀𝐼𝐷𝐶→𝐵)]
𝐶

 

This matrix is then utilized in the subsequent stage to assess the "balance of power." To determine 
this balance, it is necessary to first calculate the total direct and indirect influence of each actor. If 

interpreted as the total direct influence of actor A on others (for example B), then:𝑀𝐴 

𝑀𝐴 = ∑ (𝑀𝐼𝐷𝐼𝐴,𝐵) − 𝑀𝐼𝐷𝐼𝐴,𝐴
𝐵

 

If defined as the total direct and indirect influence that actor A receives from other actors, it represents 

actor A's level of dependency, then:𝐷𝐴  

𝐷𝐴 = ∑ (𝑀𝐼𝐷𝐼𝐵,𝐴) − 𝑀𝐼𝐷𝐼𝐴,𝐴
𝐵

 

By incorporating these two components along with the basic power coefficient, the calculation is then 
performed using a specific formula: 

𝑟𝐴 = [
(𝑀𝐴 − 𝑀𝐼𝐷𝐼𝐴,𝐴)

∑ (𝑀𝐴)𝐴
] 𝑥 [

𝑀𝐴

𝑀𝐴 + 𝐷𝐴
] 

In the next step, MACTOR calculates a crucial matrix, which serves as a fundamental component in the 
analysis and discussion. This matrix is produced from a previous process or is a product of and or 

3𝑀𝐴𝑂𝑀𝐴𝐶𝑇𝑂𝑅3𝑀𝐴𝑂2𝑀𝐴𝑂𝑟𝐴 
3𝑀𝐴𝑂𝐴,𝑖 = 2𝑀𝐴𝑂𝐴,𝑖 × 𝑟𝐴 

By analyzing this matrix, various analytical outputs can be generated. One of these is the 
mobilization coefficient, which indicates how each actor responds in a given situation. This feature is 

generated through a formula 3𝑀𝐴𝑂 

𝑀𝑜𝑏𝐴 = ∑ | 3𝑀𝐴𝑂| 

The analysis results also reveal areas of agreement and disagreement concerning a goal, which are 

determined through specific calculations: 3𝑀𝐴𝑂 

𝐴𝑔𝐴 = ∑ (3𝑀𝐴𝑂𝐴,𝑖(3𝑀𝐴𝑂 > 0))
𝑎

 

𝐷𝑖𝑠𝐴𝑔𝐴 = ∑ (3𝑀𝐴𝐼𝐴𝑖(3𝑀𝐴𝑂 < 0))
𝑎
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Another key feature derived from the matrix is the convergence matrix, which indicates the extent to 
which actors agree on a particular issue, while divergence represents the optimal scenario. The 

convergence matrix is calculated using a specific equation:3𝑀𝐴𝑂(3𝐶𝐶𝐴)(3𝐷𝐷𝐴)  

3𝐶𝐴𝐴 =
1

2
∑ (|3𝑀𝐴𝑂𝐴,𝑖| + |3𝑀𝐴𝑂𝐵,𝑖|)(3𝑀𝐴𝑂𝐴,𝑖 ×

𝑖
3𝑀𝐴𝑂𝐵,𝑖 > 0) 

While the divergence matrix is written: 

3𝐷𝐴𝐴 =
1

2
∑ (|3𝑀𝐴𝑂𝐴,𝑖| + |3𝑀𝐴𝑂𝐵,𝑖|)(3𝑀𝐴𝑂𝐴,𝑖 ×

𝑖
3𝑀𝐴𝑂𝐵,𝑖 < 0) 

The calculation of convergence and divergence between actors ultimately leads to the determination 
of the final indicator, known as the ambivalent coefficient for each actor, which is derived using a specific 

formula 𝑀𝐴𝐶𝑇𝑂𝑅 

3𝐸𝑄𝑖 = 1 − [
(∑ ||3𝐶𝐴𝐴𝑖,𝑘 − 3𝐷𝐴𝐴𝑖,𝑘||)𝑘

∑ ||3𝐶𝐴𝐴𝑖,𝑘 + 3𝐷𝐴𝐴𝑖,𝑘||𝑘

] 

These formulas outline the analytical framework. In practice, the analysis is guided by the following 

principles:𝑀𝐴𝐶𝑇𝑂𝑅𝑀𝐴𝐶𝑇𝑂𝑅 
1. Create a table outlining the "strategies of actors." 
2. Identify the strategic issues and objectives. 
3. Map the actors' positions concerning the advantages and disadvantages of the objectives. 
4. Determine the priority goals for each actor. 
5. Analyze the balance of power for each actor. 
6. Integrate the balance of power into the analysis of convergence and divergence. 
7. Formulate key questions for the reconstruction process. 

 
The second approach utilized for data analysis in this research is the Analytic Network Process 

(ANP), a mathematical model created to support decision-making when multiple interrelated factors 
(dependencies) and feedback loops are involved. The ANP method considers both internal interactions 
and feedback within a particular cluster (internal dependence) and external interactions between 
different clusters (external dependence). Within ANP, comparisons are made among the elements of 
each cluster to evaluate the interactions across the entire network. This method relies on three core 
principles that form the theoretical basis of the technique. These principles are considered valid based on 
common understanding, without needing empirical validation. According to these principles: 
 
2.1. Reciprocal 

If activity X is deemed six times more significant than activity Y, then the importance of activity Y 
is one-sixth that of activity X. 
 
2.2. Homogeneity 

This principle indicates that when the elements being compared have only a slight difference, the 
likelihood of making judgment errors increases substantially. Unlike the typical Likert scales, which 
usually range from 1 to 5, the scales used in the Analytic Hierarchy Process (AHP) and Analytic 
Network Process (ANP) are distinct. Specifically, the ANP scale has a broader range, stretching from 1 
to 9. The following section details the scale employed in the ANP. 
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Table 1.  
Scales in ANP. 

Description 
Level of 
Importance 

Explanation 

Very much greater influence/level of 
influence 

9 There is compelling evidence that strongly favors one 
element over the other, with a high likelihood of confirmation 

Between grades 7-9 8 A middle value that represents two neighboring values 

Very much greater influence/level of 
importance 

7 One element is clearly superior to the others, as evidenced in 
practice 

Between 5-7 6 A middle value that represents two neighboring values 
Greater influence/level of importance 5 Experience and judgment clearly favor one element over the 

other 
Between 3-5 4 A middle value between two neighboring values 

Slightly greater influence/level of 
importance 

3 Experience and judgment somewhat favor one element over 
the other 

Between 1-3 2 A middle value that represents two closely related values 
The same magnitude of influence/level of 
importance 

1 The two elements being compared have an equal contribution 
to the goal 

 
The procedure for performing an analysis with the Analytic Network Process (ANP) is illustrated in 

the image below: 
Step 1: Formation of the ANP Network 
The formation of the Analytic Network Process (ANP) network involves structuring a decision 

problem into interconnected elements and clusters, allowing for dependencies and feedback loops. The 
process begins by identifying key elements and grouping them into clusters, followed by establishing 
relationships between them.  

Step 2: Pairwise Comparisons 
Pairwise comparisons involve evaluating two elements at a time to determine their relative 

importance or preference based on a specific criterion. Experts or decision-makers assign numerical 
values using a predefined scale, such as the Saaty scale, to quantify the strength of one element over 
another. These comparisons are then used to construct a matrix, which helps derive priority weights 
through normalization and consistency analysis. 

For an n × n pairwise comparison matrix, the number of comparisons needed is determined using 

the formula n × (n−1)/2, where n represents the total number of elements being assessed. Furthermore, 
reciprocal values can be automatically calculated and assigned for reverse comparisons within the 
matrix. The pairwise comparison value aij must satisfy the following equation: 

aij × aji = 1 
Here, aij represents the value of the pairwise comparison, which is determined using the 

fundamental scale. 
Step 3: Consistency Check 
By evaluating the resulting comparison matrices, eigenvectors are extracted, which represent the 

weights of the elements. The local priority vector is then computed as shown in the following equation: 

Aw =λmax 
where A represents the matrix of pairwise comparison values; w is the priority vector, also known 

as the principal eigenvector; and λmax is the maximum or principal eigenvalue of matrix A. 
Consistency check in pairwise comparisons ensures that the judgments made by decision-makers are 

logically consistent. It involves calculating the consistency ratio (CR), which compares the consistency 
index (CI) of the judgment matrix with a random index (RI). A CR value below 0.1 indicates acceptable 
consistency, while higher values suggest the need for adjustments in the comparisons to improve 
reliability. The CI and CR are calculated using the equation shown below: 

CR = CI/RI 
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with CI = (λmax−n)/(n−1) (3) where CR represents the consistency ratio; CI represents the 
consistency index; RI represents the random index; and n is the size of matrix A. 

Step 4: Supermatrix and Global Priority Calculation 
Relative importance is established through pairwise comparisons. However, this alone does not 

completely capture the differences between clusters and elements. To overcome this, the supermatrix is 
utilized, as demonstrated in the equation below: 

 
 
The supermatrix in the Analytic Network Process (ANP) is a structured matrix that represents the 

influence of elements on one another within a decision network. It is formed by arranging the local 
priority vectors obtained from pairwise comparisons into a weighted supermatrix, which accounts for 
interdependencies among criteria and alternatives. To derive the global priority, the supermatrix is 
normalized and raised to a limiting power until it converges to a stable state, ensuring consistent 
priority values for final decision-making. 

 

3. Results and Discussion 
 In the strategy to accelerate the implementation of Climate Smart Agriculture (CSA) with a 

circular economy approach, collaboration and synergy among various relevant stakeholders are 
essential. These stakeholders include regional government groups, village governments, communities, 
entrepreneurs, farmer organizations, and non-profit organizations. Their involvement considers the 
following factors: 

1. These stakeholders/actors hold the authority to implement Climate Smart Agriculture in Kopeng 
Village. 

2. These stakeholders/actors will be affected by the implementation of Climate Smart Agriculture. 
3. The participation of these stakeholders/actors is critical for the success of Climate Smart 

Agriculture in Kopeng Village. 
4. These stakeholders/actors possess the necessary competence to implement Climate Smart 

Agriculture. 
Considering these factors, the stakeholders/actors who serve as the data sources for this research 

are as follows: 
 
Table 2. 
Stakeholder/Actor Mapping. 

No Stakeholders/Actors Issue Objectives/Goals 

1 Organic farmer Strategy for Accelerating 
the Realization of Climate 
Smart Agriculture (CSA) 
with a circular economy 
perspective approach 

Economic aspect: 
1. Increased production 
2. Increasing farming efficiency 
3. Increase in farmer income 

Social aspect: 
4. Economic equality 
5. Increased welfare 
6. Poverty reduction 

Environmental Aspects: 
7. Reducing the use of chemical agricultural 

inputs 
8. Biodiversity conservation 

2 Conventional farmers 

3 Public 
4 Research institutions 

5 Agriculture-based business and 
industry world 

6 College 
7 Trader 

8 Department of agriculture 
9 Financial institutions 

 
Based on Table 2, the mapping of actors involved and interested in the Acceleration Strategy for the 

Realization of Climate Smart Agriculture (CSA) with a circular economy approach includes 9 actors. 
The composition of these actors demonstrates a diverse set of characteristics, reflecting involvement 
across various sectors, government levels, and non-governmental institutions. These actors are entities 
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that have an interest in, and a role in mobilizing resources to influence the realization of smart 
agriculture in Kopeng Village. Understanding the relationships between these actors is crucial to 
advancing efforts to accelerate the implementation of Climate Smart Agriculture (CSA) from a circular 
economy perspective. To analyze these relationships, the researchers employed Mactor software 
(Matrix of Alliance Conflict Tactics Operations and Responses). The following section outlines the 
relationships between the actors in the smart agriculture climate model for Kopeng Village. 
 
Table 3.  
Influence and dependency matrix between actors. 
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Organic farmer 24 21 22 22 24 23 23 12 24 195 
Conventional farmers 11 24 21 20 20 15 13 20 14 158 

Public 23 19 13 21 18 17 14 15 14 154 
Research institutions 24 18 21 20 24 16 17 12 18 170 

Business world and 
industrial world 16 19 20 17 21 17 22 11 17 160 

College 24 20 17 18 24 18 20 14 19 174 
Trader 20 21 19 19 14 20 16 21 13 163 

Department of agriculture 12 22 20 12 21 12 24 23 18 164 
Financial institutions 21 17 21 11 14 14 24 16 22 160 

In 175 181 174 160 180 152 173 144 159 1498 

 
Table 3 indicates that stakeholders with the highest influence in the Acceleration Strategy for the 

Realization of Climate Smart Agriculture (CSA) include the Department of Agriculture (score of 194), 
Organic Farmers (score of 195), Universities (score of 174), and Research Institutions (score of 170). On 
the other hand, the stakeholder with the lowest influence is the consumer community, with a score of 
154. Additionally, stakeholders with a higher tendency to be dependent are conventional farmers (score 
of 181) and the business and industrial sectors (score of 180). In contrast, the stakeholder with the 
lowest dependency is the Department of Agriculture, with a score of 144. 

The actor preference matrix for goals illustrates the preferences of the stakeholders involved 
concerning the desired goals or targets for implementing Climate Smart Agriculture (CSA) in Kopeng 
Village. These goals are divided into three categories: economic, social, and environmental. The 
economic category includes goals such as boosting production, enhancing farming efficiency, and 
increasing farmer income. The social category focuses on promoting economic equality, improving 
welfare, and alleviating poverty. The environmental category aims at reducing the use of chemical 
agricultural inputs and preserving biodiversity. The level of actor mobilization and objectives are 
outlined in the following table: 
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Table 4.  
Degree of actor mobilization and goals. 
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Organic farmer 2 3 4 2 2 3 4 2 22 
Conventional farmers 4 3 2 3 3 4 -2 4 21 

Public 2 3 0 2 3 2 3 2 17 
Research institutions 2 0 2 1 1 0 2 2 10 

Business world and industrial world 4 1 3 2 3 3 3 2 21 
College 4 2 0 2 1 1 4 3 17 

Trader 3 4 0 2 0 -4 2 2 9 

Department of agriculture 3 2 3 1 2 3 2 1 17 
Financial institutions 1 2 0 2 3 2 4 2 16 

Number of agreements 25 20 14 17 18 14 22 20  
Number of disagreements 0 0 0 0 0 -1 -1 0  
Number of positions 25 20 14 17 18 13 21 20  

 
Table 4 shows the position of each actor on each target/goal (objective), considering the level of 

each actor’s opinion regarding the competitiveness target and the hierarchy of the targets. The output 
of this matrix serves two purposes. First, it determines the degree of mobilization, which highlights the 
target/objective that most engages the actors. Second, it identifies the actors who are most active in 
mobilizing their resources to achieve these goals or objectives. 

The degree of mobilization (shown in the bottom row) reveals which goals are expected to become 
the primary issues that provoke stakeholder reactions. In the efforts to realize a smart agriculture 
climate, the most pressing issues are increasing productivity (score of 25) and reducing the use of 
chemical agricultural inputs (score of 22). The actors most mobilized to address these issues are organic 
farmers (score of 22), conventional farmers (score of 21), and the industrial sector (score of 21). These 
actors are the most actively engaged in responding to challenges in realizing a smart agriculture climate 
in Kopeng Village. 
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Figure 1.  
Actor role patterns in realizing climate smart agriculture. 

 
Figure 1 shows that the level of convergence (agreement and alignment) among actors in 

implementing Climate Smart Agriculture in Kopeng Village is generally moderate. By examining the 
objectives/goals and their roles in mobilizing resources, we can identify the actors with the "strongest 
convergences," who play the most important role in realizing Climate Smart Agriculture. These key 
actors include organic farmers, research institutions, and universities. Organic farmers must act as 
influencers, encouraging conventional farmers who still rely on inorganic methods to transition to CSA 
farming based on a circular economy approach. Currently, most farmers in Kopeng continue to depend 
on inorganic farming practices. The critical role of these key actors will be supported by those in the 
"strong convergences" category, including organic farmers, research institutions, and universities. 

The results from the ANP (Analytic Network Process) analysis show that the pairwise comparison 
matrix between criteria/groups was created based on questionnaires filled out by key individuals. This 
matrix uses values ranging from 1 to 9. After completing the assessments, the average value from the 
questionnaires is calculated to derive a relative value. This relative value is then used as input for the 
ANP, specifically in the super decision application developed by M. Saaty. Below are the results of group 
comparisons between the criteria: 

 
Table 5.  
Results comparative analysis between criteria. 

Criteria Weight 
Reducing chemical inputs 0.3121 

Efficient irrigation management 0.1251 
Sustainable soil conservation 0.2373 

Climate change adaptation and mitigation 0.1032 
Increasing the social and economic welfare of  farmers 0.1437 

Efficient farming management 0.2132 

 
Table 5 shows the priority strategy for realizing a circular economy-based smart agriculture 

climate, based on the priority value (eigenvector). The criterion for reducing chemical inputs ranks first 
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with a value of 31.21%. In second place is sustainable soil conservation with a value of 23.73%. 
Meanwhile, efficient farming management takes third place with a value of 21.32%. 

 
3.1. Priority Order Based on Criteria 

The final priority in the ANP model is determined through absolute weighting using an interval 
scale (1.0), which also serves as an indicator of relative dominance. The priority value is calculated by 
normalizing the matrix vector. In the final priority, there are limiting weights that are normalized by 
cluster and ranked accordingly. The final priority value, shown in the table below, reflects the weight of 
all elements, including those with limiting weights and those normalized by cluster. The limiting 
weight comes from the limit supermatrix, while the normalized by cluster refers to the division of 
limiting element weights by the total sum of those weights within a component. The final priority is 
used to identify the best alternative, which is the one with the highest final value. Below are the final 
priorities for selecting a strategy to implement circular economy-based smart agriculture: 

 
Table 6.  
Results of comparative analysis of all criteria and sub-criteria. 

No Criteria Sub criteria Normalized by cluster Limiting 
1 Sustainable soil 

conservation 
Use of  land cover 0.2364 0.0564 

No-till land management 0.1257 0.0346 
Crop rotation 0.3386 0.0766 

2 Efficient irrigation 
management 

Prevention of  water pollution 0.1421 0.0289 

Improved water resources management 0.3464 0.0956 
Water saving irrigation 0.3114 0.0561 

3 Efficient farming 
management 

Plant various types of  plants 0.1593 0.0131 
Maintain wild vegetation 0.2247 0.0187 

Implement intercropping 0.3162 0.0271 
4 Reducing chemical 

inputs 
Use of  organic pesticides 0.0764 0.0187 

Use of  biological fertilizer 0.1563 0.0317 
Integrated pest management 0.1077 0.0238 

Reduction of  chemical fertilizers and 
pesticides 

0.2598 0.0485 

5 Increasing the social 
and economic welfare 
of  farmers 

Promote fair trade 0.1217 0.0298 
Improving decent working conditions 0.2193 0.0188 

Increased access to education and technology 0.3592 0.0311 

6 Climate change 
adaptation and 
mitigation 

Weather forecast when planting 0.0301 0.0292 
Crop diversification 0.0488 0.0348 

Reduce greenhouse gas emissions 0.1257 0.0579 
Choose plant varieties that are resistant to 
extreme weather 

0.3957 0.1391 

 
From Table 6, the strategic priorities for realizing a circular economy-based smart agriculture 

climate are presented. The priorities chosen above reflect strategies that have been determined by the 
key person—an individual with expertise in the field—and processed through the Super Decision 
application to derive a strategy for realizing a smart agriculture climate based on a circular economy. 
These priorities are based on all sub-criteria elements, with the most prioritized strategy being the 
selection of extreme weather-resistant plant varieties, which has a limiting value of 13.91%. The second 
priority is improving water resources management, with a limiting value of 9.5%. Lastly, the final 
priority is planting a variety of plant types, which has a limiting value of 1.3%. 
 

4. Discussion 
Cimate Smart Agriculture (CSA) focuses on three main pillars, namely increasing agricultural 

productivity in a sustainable manner, building resilience to climate change, and reducing greenhouse 
gas emissions. On the other hand, Circular Economy (CE) aims to minimize waste and maximize 
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resource reuse through closed cycles in production and consumption systems. The integration of these 
two approaches can create an agricultural system that is not only productive and resilient to climate 
change, but also efficient and environmentally friendly [3]. 

To accelerate the realization of CSA with a CE approach, strategies need to be developed that 
include technological innovation, local adaptation, supportive policies, and increasing farmer capacity 
[2]. Technological innovations such as the use of climate sensors, drones and artificial intelligence can 
help farmers optimize the use of water, fertilizer and pesticides, as well as predict extreme weather 
conditions. This technology can also be used to monitor plant health in real-time, thereby reducing crop 
losses and increasing production efficiency. Additionally, agricultural practices such as agroforestry, 
crop rotation, and the use of organic fertilizers can be integrated within the CE framework to support 
environmental and economic sustainability [8]. 

Adaptation of CSA and CE strategies to local contexts is also critical. Each region has different 
climatic conditions, soil types and traditional agricultural practices, so a one-size-fits-all approach will 
not be effective [9]. In-depth local research is needed to adapt these strategies to specific conditions, as 
well as to identify and exploit existing local potential. In addition, socio-economic factors such as the 
scale of the farming business, access to markets, and the farmer's education level must also be considered 
in developing this strategy [10]. 

Supportive policies are another key element in accelerating the realization of CSA with a CE 
approach. Governments need to develop policies that provide economic incentives for sustainable 
agricultural practices, such as subsidies for green technologies, microcredit for small farmers, and 
training programs. These policies should be supported by regulations that reduce barriers to the 
adoption of CSA and CE practices, as well as promote research and development in these areas 9 [15]. 

Increasing farmer capacity through education and training is also very important. Farmers need to 
be provided with the knowledge and skills necessary to implement CSA and CE practices. Training 
programs can cover how to use new technologies, sustainable farming practices and climate risk 
management. Collaboration between government, the private sector, academia and local communities is 
also needed to create an ecosystem that supports the adoption of CSA and CE [16]. The role of organic 
farmers and research institutions is very crucial in the strategy to accelerate the realization of Climate 
Smart Agriculture (CSA) with a Circular Economy (CE) perspective approach. Organic farmers, with 
their commitment to sustainable agricultural practices, already apply many principles in line with CSA 
and CE [6]. They avoid the use of synthetic chemicals, exploit natural cycles to increase soil fertility, 
and often use crop diversification techniques that can increase resilience to climate change. These 
practices not only reduce negative environmental impacts but also support the long-term sustainability 
of agricultural systems [7]. By adopting and promoting innovative technologies such as compost from 
organic waste, rainwater harvesting, and renewable energy, organic farmers can become a model for the 
integration of CSA and CE, demonstrating that resource efficiency and climate resilience can be 
achieved without sacrificing productivity. 

Research institutions play an equally important role in accelerating the realization of CSA with a 
CE approach. Through research and development, the institute can explore and develop new 
technologies, best practices and innovative farming systems. Research on climate-resilient crop 
varieties, soil management techniques that increase carbon sequestration, and efficient methods of water 
management are critical to supporting CSA. Additionally, research institutions can help identify and 
measure the environmental and economic impacts of CSA and CE practices, providing the empirical data 
needed to shape effective policies and support decisions at the field level. 

Climate change adaptation and mitigation play a central role in the strategy to accelerate the 
realization of Climate Smart Agriculture (CSA) with a Circular Economy (CE) perspective approach. 
Adaptation in this context refers to the ability of agricultural systems to adapt to changing climatic 
conditions and reduce the resulting negative impacts. This includes using plant varieties that are 
resistant to drought, flooding, and temperature extremes, as well as implementing efficient water 
management practices, such as drip irrigation and rainwater harvesting [11]. Adaptation also involves 
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diversifying crops and planting patterns to reduce the risk of crop failure due to uncertain climatic 
conditions. By integrating CE principles, such as reusing crop residues as compost and managing 
organic waste to improve soil fertility, farmers can increase the resilience of their farming systems to 
climate change while minimizing waste and maximizing resource utilization. 

On the other hand, climate change mitigation within the CSA framework focuses on reducing 
greenhouse gas emissions produced by agricultural activities. This involves practices such as efficient 
fertilizer management to reduce nitrogen oxide emissions, use of organic fertilizers that reduce 
dependence on synthetic chemicals, and tree planting and agroforestry that serve as carbon sinks [12]. 
Better livestock management, including efficient feeding and manure management, also contributes to 
reduced methane emissions. The CE approach strengthens these mitigation efforts by ensuring that 
every input in the agricultural system is used as efficiently as possible and converted into value-added 
products or reprocessed into resources, reducing the need for external inputs that often contribute to 
greenhouse gas emissions [17]. 

Collaboration between adaptation and mitigation creates synergies that strengthen the agricultural 
system as a whole. For example, conservation farming techniques that reduce tillage not only help in 
carbon sequestration but also increase soil water retention, making crops more resistant to drought 
[18]. Likewise, agroforestry systems not only sequester carbon but also provide shade and wind 
protection for plants, as well as increasing biodiversity which can help control pests naturally. The 
implementation of CE principles in adaptation and mitigation ensures that every step taken to reduce 
the impacts of climate change also contributes to resource efficiency and long-term sustainability. 

 

5. Conclusion 
Based on the results and discussion, it can be concluded that in strategic effortsAccelerating the 

Realization of Climate Smart Agriculture (CSA) with a Circular Economy Perspective Approach 
requires strong collaboration and synergy between stakeholders/actors. The stakeholders who have the 
strongest role and influence are organic farmers, research institutions and universities. Efforts to realize 
climate smart agriculture based on a circular economy have the main strategic objectives of increasing 
agricultural productivity amidst uncertain climate change, and reducing farmers' dependence on the use 
of chemical inputs. The strategic priorities in realizing a smart agriculture climate based on a circular 
economy are selecting plant varieties that are resistant to extreme weather and improving water 
resource management. 

The results of this research provide practical implications, namely increasing resource efficiency in 
the agricultural sector. By integrating CE principles, such as reusing agricultural waste as compost or 
bioenergy, farmers can reduce dependence on expensive and potentially environmentally damaging 
external inputs. This not only lowers production costs but also increases environmental sustainability 
by reducing greenhouse gas emissions and minimizing waste. 

Additionally, adoption of CSA technologies and practices developed through this research can help 
farmers overcome the challenges of climate change. For example, the use of crop varieties that are 
resistant to extreme climate conditions, efficient irrigation practices, and soil management techniques 
that increase water retention and carbon sequestration can increase agricultural resilience and 
productivity. In this way, farmers can be better prepared to deal with extreme weather events such as 
drought or floods, which are becoming more frequent due to climate change. This also has implications 
for increasing food security, because a more resilient agricultural system can guarantee stable food 
availability even in the midst of climate challenges. 
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