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Abstract: Diabetic Retinopathy (DR) and Diabetic Macular Edema (DME) are notable eye disorders 
affecting the retina’s inner side. This retina helps a person see and distinguish between colors, which is 
crucial for performing daily activities. It has been observed in long-term diabetic patients, and the count 
gradually increases. Manually identifying its presence can be time-consuming and may not yield 
accurate results, as it can lead to various stages that, if delayed, can cause visual Impairment. Emerging 
technologies and advancements in medical care have enabled automated mechanisms to perform this 
task. Machine learning (ML) and Deep learning (DL) are two emerging fields of Artificial Intelligence 
that help identify grading severity through retinal fundus images at early stages and properly treat 
patients. The paper reviews convolutional neural networks (CNN) with hybrid models of ML and DL 
algorithms to implement and achieve it, along with the assets, limitations, and gaps of each mechanism, 
and helps improve further research. 
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1. Introduction  

Diabetes is one of the most common endocrine disorders in human beings, it is characterized by 
abnormal levels of blood glucose in the body [1]. Elevated glucose levels characterize this chronic 
condition. This leads to type 1 diabetes and type 2 diabetes or the inability to use the insulin it makes 
effectively, which, when not treated properly, affects most of the body's organs, like kidney failure, heart 
attacks, eyes, and life-threatening issues. One significant issue is DR, a painful eye disease that affects 
diabetic patients with elevated glucose levels. Around 537 million adults between the ages of 20 and 79 
worldwide are currently living with diabetes, and this figure is expected to rise substantially in the 
coming years. 

Vision is crucial to one’s life, and when it is impaired or lost, known as blindness, it can restrict one’s 
daily activities, pull back one’s independent mobility, and at extreme levels, result in mortality [2].  

DR, when not properly diagnosed early can lead to severe complications and potentially result in 
permanent vision loss. Research indicates that approximately 103.12 million individuals currently suffer 
from this condition, and this number could rise to 160.50 million. Long-term high blood sugar levels 
cause gradual vascular disturbances in the retina, a condition that has been prevalent among individuals 
living with diabetes for over ten years [2]. Diabetic retinopathy, a disorder characterized by 
hyperglycemia, which damages and injures the ocular blood vessels, causing them to leak and rupture, is 
among the most prevalent complications of diabetes. Lesions on the retina are the visible manifestation 
of this condition. These lesions lead to haemorrhages (cottage of blood due to rupture in blood vessels), 
exudates (fluid inflammation), and microaneurysms (white bulges). 
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Microaneurysms: These tiny red dots in the retina, frequently encircled by a ring of yellow lipids, 
are the first visible indicators of DR [1]. 
Haemorrhages:  The initial visible signs of DR are small red spots in the retina, typically encircled by a 
ring of yellow lipids [1]. 
Hard exudates:  These are thick yellow retinal lesions, caused by plasma leakage. 
Soft exudates: Cotton wool spots, lesions observed on the retina [1]. 
 

 
Figure 1. 
Difference between a normal retinal and diabetic retinal eye. 

 
Diabetic macular edema (DME) is a serious DR indicator. It begins with blurred sight and can 

progress to partial or complete irreversible vision loss [3]. DME is a complicated disease that starts 
with blood vessels leaking, the blood-retinal barrier breaking down, and fat building up in the retinal 
layer [4]. This process causes retinal swelling and exudate formation in the macula—hyperglycaemia 
cause glycosylation, contributing to the progression of diabetes mellitus (DM). Over time, this process 
denatures collagen proteins within the vessel walls, resulting in capillary thickening and eventual 
breakdown. DME detection can be performed directly or indirectly. Assessment of diabetic macular 
edema (DME) typically involves direct methods like stereoscopy or tomography, or indirectly by 
identifying hard exudates (HE) in color retinal images. However, despite advancements, evaluating 
DME remains largely manual and time-consuming, primarily relying on examining color fundus images 
[5]. How close the hard exudates (HE) are to the center of the macula [3] determines the extremity of 
DME. It showcases the severity in three different gradings: no DME (no visible HE's), NCSME, and 
CSME. We categorize the disease as mild or severe DME. The severity of DME is assessed based on 
whether the distance between the hard exudates (HEs) and the macula center is shorter or longer than 
the diameter of the optic disc [3]. The central retina plays a critical role in visual acuity. Therefore, 
vision blurs when edema affects the macula and may disappear completely [6]. When diagnosing and 
managing eye lesions, ophthalmologists usually perform a comprehensive eye examination, which 
involves evaluating visual acuity, conducting slit-lamp examinations, and sometimes employing optical 
coherence tomography (OCT) or fundus photography. Early detection and proper medication can save a 
person from critical conditions and permanent vision loss. Fig. 2 depicts the DR stage [7] whereas 
Table 1 outlines the five stages of DR detection [7]. Fig. 3 illustrates the DME grading process, while 
Table 2 details the importance of each grading stage [7]. 
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Table 1. 

Clinical assessment-based DR classification. 
DR stage Diagnosis Observable clinical findings 
0 No DR No abnormalities 

1 Mild DR Microaneurysms are present 
2 Moderate NPDR Microaneurysms, Haemorrhages or exudates can have any of two features 

3 Severe NPDR Venous bleeding in two quadrants if found 
4 PDR Neovascularization or/and Vitreous haemorrhage 

 

 
 (a) No DR               (b) Mild DR            (c) Moderate DR   (d) Severe NPDR    (d) Proliferative DR 
Figure 2. 
Stages of diabetic retinopathy. 

 
Table 2. 
Diabetic macular edema categorization. 

DME grade Diagnosis Observable clinical findings 
0 Denoting normal Barely observable arterial narrowing 

1 Non-clinically significant macular edema Irregularities in the arterial narrowing 

2 Clinically significant edema Along with grade 1 wool cotton-like bulges seen 

 

 
                                              Grade 0         Grade 1           Grade 2 

Figure 3. 
Grading of diabetic macular edema. 

 
Many individuals affected by DR avoid consulting eye-care professionals until the condition 

progresses from severe NPDR or PDR stages. Additionally, classic techniques for identifying DR 
require ophthalmologists for evaluation and diagnosis, which is both laborious and costly. Therefore, it 
has become essential to introduce efficient DL and ML (ML) methodologies, primarily utilizing retinal 
images that visually capture the ophthalmic condition of one's retina. The classification task usually 
involves categorizing the condition into binary classes, referred to as DR detection [8]. In DR, the 
process involves identifying the affected regions and classifying the types of contamination, ranging 
from moderate to extreme. Individuals often approach this task as a multiclass classification problem 
[8]. 

This literature survey aims to compile, analyze, and present the findings of various studies that have 
employed CNNs (convolutional neural networks) and hybrid models of ML-Projection models to show 
how diabetic retinopathy will get worse. The aim is to provide fellow researchers with up-to-date 
research methodologies to develop ML-based prognostic models for assessing the risk of DR 
progression and its associated complications. Furthermore, it gathers the latest discoveries from these 
investigations, recognizes research obstacles, constraints, and areas lacking, and aids in selecting 
predictors and ML techniques for developing groundbreaking prediction models. 

Manually detecting diabetic retinopathy through fundus images can be time-consuming and may 
not accurately distinguish between the severe and proliferative stages. This can cause delays, prevent 
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early detection of the problem, and fail to provide medication at the appropriate time, potentially 
resulting in severe and permanent vision loss. Advancements in technology and improvements in image 
processing have made it possible to automatically detect diabetic retinopathy and edema, along with 
their severity levels, using a range of ML and DL algorithms, providing valuable support to the medical 
field in addressing diverse image classification challenges. We have conducted a few studies, which are 
listed below, that demonstrate technology implementation, achievements, and the potential for further 
research. Utilizing ML and deep convolutional neural networks to construct risk-prognostic models is 
unavoidable. This is because they are adept at identifying complex patterns within extensive patient 
datasets and comprehending the nuanced connections among individuals' risk factors over time, gleaned 
from past cases. 

The paper consists of multiple sections. Sections 2, 3, and 4 are titled "Literature Review," “Datasets 
Used,” and “Discussions”. Section 5 focuses on the “Future Work” that can be implemented for further 
enhancements, and Section 6 is entitled “Conclusion”. 
 

2. Literature Review 
The diagnosis and classification of DR and DME can be made by finding the lesions on the retina. 

Preprocessing images is an essential step to minimize noise and enhance their quality. The main goals of 
this review are to find accurate information about diabetic retinopathy using unlabelled and limited 
annotated data, to compare and look at the different current approaches for DR identification using DL 
methodologies while taking into account the unique features of DR, and to look into the possible 
opportunities and problems that future researchers in DR diagnosis will need to confront and address. 
 
Table 3. 
DR- DME grading studies.  

Literature Dataset Method 
DR detection and grading approaches 

Nazih, et al. [8] FGADR Vision transformer (ViT) 

Ali, et al. [9] MESSIDOR, IDRiD ResNet-50 inceptionV3 
 

Shaik and Cherukuri [2] 

Kaggle APTOS 2019 
and ISBI IDRiD 

Hinge attention network 

Reddy and Gurrala [10] IDRiD HGCN with RASCA 
Ardiyanto, et al. [11] APTOS 2019 ResNet-50 

Cao, et al. [12] DIARETDB1 CNN 
Aswathi, et al. [13] APTOS 2019 ResNet-50 

Jabbar, et al. [14] DIARETDB1 GoogleNet ResNet 
DME detection and grading approaches 

Yinghua, et al. [15] MESSIDOR ResNet50 
Gayathri and Subramanian [3]  Kaggle DenseNet 

Tu, et al. [16]  IDRiD VGGNet 

Suchetha, et al. [17]  MESSIDOR, DMED - 

Gadde and Kiran [18] IDRiD CNN 
Albelaihi and Ibrahim [19] MESSIDOR 

DIARETDB0 
DIARETDB1 

HEI-MED 

VGGNet,ResNet 

Chaudhary and Pachori [20]  IDRiD 
MESSIDOR 

2DFBSE-FAWT 

 
Among all the approaches the most commonly used is Convolutional Neural Networks. CNN stands 

as a cornerstone in DL, is renowned for its effectiveness, and is often employed alongside other 
prominent architectures like ResNet, Inception, and GoogLeNet. These models are widely favored for 
their prowess in image classification tasks.  
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A Convolutional Neural Network (CNN) is a specialized deep neural network designed for 
processing grid-structured data, particularly images. It comprises multiple layers, including 
convolutional layers, pooling layers, and fully connected layers. CNNs have revolutionized tasks like 
image categorization, object detection, and image segmentation by independently learning hierarchical 
features from raw data. Some notable types of CNN models include ResNet, GoogleNet, LeNet, 
AlexNet, and VGG.  
 

 
Figure 4. 
CNN Architecture. 

 
ResNet (Residual Learning) is characterized by the incorporation of skip connections, enabling the 

bypassing of one or more layers. The skip connections function to mitigate the vanishing gradient issue 
and aid in the training of neural networks that are exceptionally deep. ResNet architectures typically 
comprise a sequence of residual blocks, each incorporating convolutional layers and capturing mappings. 

GoogleNet, also known as InceptionNet, is designed for image recognition and processing, notable 
for its fidelity and computational resources. Its key component, the Inception module, enhances the 
network learns features at multiple scales concurrently, enhancing image classification performance. 
GoogleNet employs global average pooling and factorized convolutions to optimize both performance 
and resource usage. 

LeNet, pioneering CNN architecture designed for handwritten digit recognition. Trained on the 
MNIST dataset, LeNet achieved high recognition accuracy and laid the groundwork for many 
subsequent CNN architectures. 

AlexNet, self-possessed of five convolutional layers, three pooling layers, and fully connected layers, 
demonstrated superior performance compared to conventional ML techniques. Its success laid the 
foundation for the develop ent of deeper architectures.  
 
2.1. DR-Based Detection Methodologies 

Shaik and Cherukuri [2] used one of the emerging technologies DL with various attention stages 
called the Hinge Attention Network (HAN) model, integrating spatial attention autoencoder, channel 
attention-based hinge neural network, and Convolutional LSTM layer to grade diabetic retinopathy 
severity. The implementation through the Hinge Attention Network model HA-Net integrates both 
spatial and channel attention mechanisms, effectively boosting feature extraction capabilities and 
improving classification accuracy. It has demonstrated impressive performance, achieving accuracy rates 
of 85.54% on Kaggle APTOS and 66.41% on IDRiD datasets, surpassing several existing models [21]. 
HA-Net employs transfer learning methods with deep convolutional neural network architectures, 
enhancing its feature extraction prowess and boosting overall model performance. Atteia, et al. [22] 
have implemented a model that retrieves features from two DL models, Resnet50 and Inceptionv3. The 
model follows feature extraction by using Resnet50 – ResNet50 incorporates a range of convolutional 
filter sizes to expedite training and counteract the degradation challenge stemming from deeper 
network architectures. The Inception-v3 architecture is specifically tailored to visual classification to 
train fundus images. Incorporating [22] ResNet50 and Inceptionv3 models amplifies accuracy and 
performance when detecting diabetic retinopathy [23]. DL models benefit significantly from data 



1212 

 

 

Edelweiss Applied Science and Technology 
ISSN: 2576-8484 

Vol. 9, No. 1: 1207-1218, 2025 
DOI: 10.55214/25768484.v9i1.4377 
© 2025 by the authors; licensee Learning Gate 

 

augmentation techniques, leading to notable enhancements in performance [24]. Detecting diabetic 
retinopathy early through these methods can mitigate visual loss and facilitate prompt treatment, 
underscoring their clinical significance Decenciere, et al. [25] and Saeedi, et al. [26]. Reddy and 
Gurrala [10] and Zhang, et al. [27] introduced a customized deer hunting optimization algorithm 
(MDHOA) to select pertinent features effectively. By combining a hybrid graph convolutional network 
(HGCN) with relation-aware channel-spatial attention (RACSA), the proposed OHGCNet model 
enhances feature extraction performance. By amalgamating attention mechanisms, dilated convolution, 
and optimal feature selection, the OHGC-Net model achieves superior classification performance. Nazih, 
et al. [8] and Patil, et al. [28] employed the Vision Transformer (ViT) model to predict the severity of 
DR. This model employed a transformer encoder architecture, which integrated Multi-head Self-
Attention (MSA) and MLP modules, to handle image patches. The proposed ViT model adeptly 
captures crucial features from retinal images. Enhancing comprehension of DR severity, thereby 
providing valuable assistance to physicians for making precise, personalized, and prompt decisions in 
real medical situations Farag, et al. [29]. Cao, et al. [12] implemented a system that utilizes a compact 
DL algorithm called Deep-DR-Net, designed to fit on an embedded development board. Deep-DR-Net 
enhances diabetic retinopathy diagnosis accuracy through DL algorithms, ensuring precise assessment. 
Incorporating diverse convolutional layers and compact model size, it enriches feature differentiation 
while remaining suitable for resource-constrained devices. Aswathi, et al. [13] utilized ML methods 
such as RF, neural networks, and SVM for microaneurysm (MA) detection. PCA was employed as a 
technique for reducing input dimensionality in the classification process. Through dimensionality 
reduction techniques like PCA and RF feature importance, it effectively mitigates the curse of 
dimensionality, leading to more efficient classifier training and heightened performance. Additionally, 
its demonstrated generalizability across diverse datasets underscores its adaptability and robustness, 
while the comparative analysis against traditional and DL methods offers comprehensive insights, 
particularly valuable in scenarios with limited dataset sizes. 

 Jabbar, et al. [14] utilize the ResNet-50 DL model for grading DR. A transfer learning approach is 
applied for the optimization of the ResNet-50 model for improved classification accuracy. Pre-trained on 
ImageNet, ResNet-50's architecture, including residual blocks and skip connections, optimizes 
computational efficiency while maintaining high performance, showcasing its effectiveness in medical 
image classification and outperforming existing methods.          

Yinghua, et al. [15] focus on utilizing a hybrid DL model for DR detection. The technology used in 
the study includes GoogleNet and ResNet models for feature extraction, Adaptive Particle Swarm 
Optimizer (APSO) was employed for optimization, alongside ML models for classification tasks. It 
achieves a notable 94% accuracy on benchmark datasets, surpassing advanced methods, while also 
enhancing various performance parameters across different DR severity levels. Future endeavors 
include further development of ML algorithms for diagnosis, refining data augmentation and 
preprocessing strategies for improved system efficacy, and addressing biases in datasets to bolster 
model robustness and generalizability.  

The proposed architecture [7] features a hierarchical multi-task neural network with a squeeze-
and-excitation (SE) network as the backbone for extracting image features at multiple scales. It includes 
two independent forward neural network heads: one dedicated to detecting DR-related features and 
another focused on diagnosing DR severity. A squeeze-and-excitation (SE) network backbone extracts 
multi-scale image features, while skip connections transfer these features within the network to improve 
DR severity diagnosis. The balanced binomial logistic loss function effectively manages data imbalance, 
ensuring robust detection of specific DR-related features. The process might need considerable 
computational resources for training and inference, and its effectiveness depends on the volume and 
quality of the data available. The architecture's effectiveness can vary based on the diversity and 
distribution of DR-related features in different datasets. 
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2.2. DME Detection and Grading Methodologies 
Yinghua, et al. [15] propose the integration of ResNet50 with channel attention (SENet) in the 

proposed end-to-end architecture significantly enhances feature extraction, thereby improving grading 
accuracy and efficiency. However, the complexity of diabetic macular edema (DME) presents challenges 
for grading accuracy, underscoring the necessity for automated systems to support healthcare 
professionals. The end-to-end architecture combining ResNet50 and SENet enhances feature extraction, 
thereby improving grading accuracy and efficiency, which resulted in acquiring an accuracy of 97.06% 
and specificity of 98.97%. Data augmentation techniques boost network performance and address class 
imbalance, with ablation experiments validating the robustness and reliability of each module. The 
complexity of diabetic macular edema (DME) and the dependency on high-quality training data affect 
grading system accuracy, underscoring the need for continuous data improvement and advanced 
network training. Additionally, manual grading's time-consuming nature and the scarcity of medical 
image datasets highlight the necessity for further automation and research to enhance DME grading 
performance, including the development of new loss functions to address class imbalance and data 
limitations. 

Gayathri and Subramanian [3] introduces the Soft Attention-based Densenet (SA-Densenet), a CNN 
variant designed to accurately predict Diabetic Macular Edema (DME) severity from fundoscopic 
images. Using the Kaggle fundus dataset, SA-Densenet achieved high accuracy, precision, and recall. 
Key challenges noted include the slow adoption of new technologies in healthcare, concerns about 
medical data privacy, and the importance of managing false positives and negatives. Future research 
aims to reduce model parameters, optimize time consumption, and further enhance the predictive 
capabilities of SA-Densenet for DME severity grading. 

Tu, et al. [16] introduce the Feature Separation and Union Network (SUNet) for simultaneous 
grading. Within SUNet, a feature integration block is utilized, performing iterative feature separation 
and union steps to extract domain-specific features, thereby improving performance by removing 
irrelevant features and focusing on relevant ones and providing an exactness of 65.06 and 81.55% in the 
detection of DR, DME. A lesion regularizer improves interpretability by emphasizing lesions for disease 
grading. Potential challenges may include network complexity, computational demands, and the need 
for extensive training data. SUNet's approach could be applied to other multi-task learning scenarios, 
with future research focusing on optimizing its architecture for scalability and efficiency, exploring real-
time clinical applications, and integrating additional diagnostic tasks to enhance its utility in medical 
imaging analysis.  

Suchetha, et al. [17] employ digital fundus images and image processing techniques to detect 
macula swelling, involving steps like dataset collection, pre-processing, feature selection, and 
categorization. It can focus on enhancing the algorithm to handle diverse image qualities and artifacts, 
integrating DL techniques for more accurate feature extraction and classification, and extending 
dynamic detection and monitoring of macula swelling for proactive healthcare management. 

Gadde and Kiran [18] utilized CNNs, to accurately label the risk of DME and assess the grading of 
DR. CNNs are proficient in image classification tasks as they autonomously learn features through their 
convolutional layers. The model employed the 'Adam' optimizer, renowned for its impact in minimizing 
loss through adaptive gradient and root-mean-square propagation algorithms. Adam optimizes learning 
rates for each parameter individually, resulting in faster convergence during training. Rectified Linear 
Unit (ReLU) and Linear activation functions were utilized in the model. ReLU introduces non-linearity 
and aids in faster convergence during gradient descent by facilitating backpropagation. It is 
demonstrated by the DMERCNET model achieving 87.38% accuracy in classifying Diabetic Macular 
Edema (DME) risk. DL models indeed demand extensive labeled data, presenting challenges stemming 
from data privacy and availability concerns. Additionally, they necessitate substantial computational 
resources, which may not always be accessible in various healthcare settings. 

Albelaihi and Ibrahim [19] DL frameworks like EfficientNetB0, VGG16, ResNet152V2, 
GRUResNet152V2, and Bi-GRUResNet152V2 are utilized for identifying diabetic eye diseases, 
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leveraging various image augmentation methods for training. The algorithm excels in diagnosing 
medical imaging, effectively identifying and classifying diabetic eye infections, glaucoma, and cataracts, 
with the EfficientNetB0 model achieving an impressive 98.76% accuracy. While various pre-trained 
models and geometric augmentation methods enhance performance, limitations include the need for 
image format conversion and the scarcity of datasets, which necessitate additional preprocessing and 
augmentation steps to improve model evaluation. 

Chaudhary and Pachori [20] explores the use of 2-D-FBSE-FAWT, which leverages FBSE for the 
efficient implementation of FAWT. This technology employs filter banks for image analysis, aiding in 
the digital diagnosis of various grades of DR and DME, utilizing key mathematical parameters like QF, 
RDY, and DF. It provides a comprehensive feature set for analysis, supported by normalization, 
resampling, and PCA for enhanced preprocessing and dimensionality reduction. The method achieves 
high performance with ACYavg values of 0.955 for DR 0.965 for DME in the IDRiD database, and 
0.975 for DR and 0.985 for DME in the Messidor database. It relies on a constant QF decomposition 
approach, which may not be suitable for adaptive signal analysis, limiting its applicability in certain 
scenarios. 

A brief review of the above-mentioned papers includes the various datasets used the method 
implemented and various performance analysis features. It highlights the limitations of each mechanism 
implemented which gives a neat view to understand the effectiveness of the various algorithms used. 
 

3. DR DME Datasets 
The most prominent datasets, the technologies used, and the implementation procedures of the 

prior research on the detection of DR. Early diagnosis methods for DR typically utilize databases 
comprising images obtained through pupil dilation using a fundus camera that produces digital fundus 
imaging. The prevalent early-stage detection methods for diabetic retinopathy (DR) typically utilize 
databases comprising images captured after pupil dilation. For this study, we exclusively examined 
publicly accessible databases that facilitate early diabetic retinopathy (DR) diagnosis. These databases 
were selected based on their inclusion of MA masks and support for DR grading, ensuring a 
comprehensive evaluation of diagnostic capabilities for early-stage DR detection. More than 1000 MA 
segmentation masks are available, providing valuable resources for the researchers to enhance the 
development of a highly reliable computer-aided system for early DR diagnosis. 

The Kaggle EyePACS [25, 30] dataset stands as the largest and most widely accessed public 
dataset for DR classification, consisting of over 80,000 fundus images. These images were obtained from 
the EyePACS platform for the DR Detection competition, which is sponsored by the California 
Healthcare Foundation [31]. They encompass high-resolution retinal images from both eyes, captured 
across diverse imaging conditions and beyond. Trained professionals graded the images based on the 
ICDRDSS scale [32]. 

The Messidor [21] dataset, consisting of 1,200 retina fundus images, was gathered by three 
ophthalmic departments in France from 2005 to 2006. Among these images, 800 were acquired after 
pupil dilation, while the remaining 400 were captured without dilation. The Messidor 2 [21] dataset 
expands upon the original Messidor dataset, incorporating data types from it along with an extra 690 
images. 

DRIVE [33] data set includes a total of 40 images with DR detection of 20 where 10 are taken for 
the testing sets and 10 for the training sets with the image resolution of 768 x 584 

The IDRiD [5] dataset comprises 516 high-quality images collected at an ophthalmology clinic in 

Nanded, India, using a Kowa VX - 10α fundus camera. Before image capture, both eyes of all 
participants were dilated. This dataset includes image-level grading of Diabetic Retinopathy severity 
based on the ICDRS scale and assesses the risk of Diabetic Macular Edema (DME) for all 516 images.  

HRF [34] dataset consists of images related to blood vessel segmentation and exudates which 
consists of 45 images in total and 15 identified as images with DR, with an image resolution of 2334 x 
3506. 
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Table 4 outlines the comprehensive datasets utilized in previous research endeavours, accompanied 
by detailed descriptions [32]. 
 
Table 4. 
Specifications of frequently utilized datasets. 

S.no Dataset Total 
images 

Images 
with DR 

Data utilizing Training 
sets 

Training 
sets 

Image size 

1 Kaggle 88702 23359 All features 35126 53576 Different resolutions 

2 MESSIDOR  1200 660 EXs and HEMs - - Different resolutions 2304 
× 1536,2240 × 1488 

3 MESSIDOR 2 1748 - EXs and HEMs - - Different resolutions 
4 DRIVE 40 7 Blood vessels and 

EXs 
20 20 768 × 584 

5 STARE 20 10 Blood vessels - - 700×605 

6 HRF 45 15 Blood vessels and 
EXs 

8 7 2334×3506 

7 DDR 13673 6256 All features 6835 4105 Different resolutions 
8 DR 435 - All features - - 857×569 

9 IDRid 516 348 Mas, EXs and 
HEMs 

413 103 4288848 

 

4. Discussions 
The comparisons among all the different types of datasets used and the methods implemented are 

analyzed and evaluated through the performance metrics achieved are considered and the best results 
and the best methodologists are considered for further approaches in enhancing the upgrading 
mechanism for the early detection and severity levels. Table 5 and Table 6 give a comparison overview 
of the performances of the above-discussed methods. Kaggle, MESSIDOR, and IDRiD are the large 
datasets that have provided the researchers with effective data for the performance. 
 
Table 5. 
Comparison of the different methods for DR Detection. 

Literature Dataset Method Performance 

Nazih, et al. [8] FGADR Vision Transformer (ViT) F1 score=82.5% 
Accuracy = 82.5% 
Precision=96.4% 
Recall=82.5% 
Sensitivity=95.6% 

Ali, et al. [9] MESSIDOR, IDRiD ResNet-50 InceptionV3 F1 score=98.65% 
Accuracy = 96.85% 
Sensitivity=99.28% 
Specificity=98.92% 
Precision=96.46% 

Shaik and Cherukuri 
[2] 

Kaggle APTOS 2019 and ISBI IDRiD Hinge attention network Accuracy = 85.54% 

Reddy and Gurrala [10] IDRiD HGCN with RASCA 
 

Accuracy = 99.03% 
Precision=99.56% 
F1 score=99.49% 
Recall=99.43 

Ardiyanto, et al. [11] APTOS 2019 ResNet-50 Accuracy = 93.2% 

Cao, et al. [12] DIARETDB1 CNN AUC=98.5% 
F1 Score=92.6% 

Aswathi, et al. [13] APTOS 2019 ResNet-50 Accuracy =90% 
Kappa Score= 94% 

Jabbar, et al. [14] DIARETDB1 GoogleNet ResNet Accuracy= 94% 
Precision=97% 
F1 score=96% 
Recall=89% 
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Table 6. 
Comarison among the different methods for DME Detection. 

 

5. Future Directions 
Our study has identified several potential avenues for future research. The major implementations 

for diagnosing of DR and DME is done through CNN. The research in the papers [2, 8, 13] has used 
Hinge Attention Networks, Vision Transformers, and ResNet-50 algorithms for better results and also 
have some limitation issues like restriction towards the limited data availability which imparted the 
overall data, and optimization problems which can, even more, provide better results which with RNN, 
Capsule Networks, and Transformers which can handle large dependencies and parallel processing, 
which improve interpretability in spatial hierarchies. The research in papers like [16, 18] provides 
effective results in detecting DME but with that of Kaggle datasets. Hybrid models along CNN can be 
implemented by RNN and Attention Mechanism and tested for effective results using other datasets like 
Messidor and IDRiD datasets. Where we can now work on the Collaborative detection of DR and DME 
grading with advanced algorithms and achieve effective results, which helps the patients to know about 
their condition clearly and opt for the required treatment. 
 

6. Conclusion 
 This work reviewed recent CNN-frameworks for detecting and grading DR and DME using 

fundus images. We categorized the studies into two groups: those focused on DR detection and DME 
intensity grading. Most studies classified retinal images according to their complication levels. Various 
studies have effectively used nearly all recent deep-learning networks for detecting and grading DR and 
DME. We also assembled a list of frequently utilized Ophthalmic image datasets for DR diagnosing and 
classification. Furthermore, we compared similar studies based on their performance metrics. Our goal 
is to inspire researchers to develop innovative strategies for optimizing and hybridizing DL algorithms, 
and to advance future research on the joint identification and detection of severe grading in DR and 
DME. 
 

Transparency:  
The authors confirm that the manuscript is an honest, accurate,  and  transparent  account  of  the  
study; that  no  vital  features  of  the  study  have  been  omitted;  and  that  any  discrepancies  from  
the  study  as planned have been explained. This study followed all ethical practices during writing. 
 

Literature Dataset Method Performance 
Yinghua, et al. [15] 
 

MESSIDOR ResNet50 Accuracy= 97.06% 
Specificity=98.97% 
F1 score=91.77% 
Sensitivity=88.64% 

Gayathri and Subramanian [3]  Kaggle DenseNet Accuracy= 98.37% 
Precision = 97% 
Recall = 96% 

Tu, et al. [16] IDRiD VGGNet Accuracy = 65.06% 
Accuracy = 81.55% 

Suchetha, et al. [17]  MESSIDOR, DMED - Accuracy = 96.07% 
Sensitivity = 93.74 
Specificity = 97.32% 

Gadde and Kiran [18] IDRiD CNN Accuracy = 87.38% 

Albelaihi and Ibrahim [19] MESSIDOR 
DIARETDB0 
DIARETDB1 
HEI-MED 

VGGNet 
ResNet 

Accuracy = 98.7% 
Recall = 98.7% 
Precision = 99.7% 

Chaudhary and Pachori [20]  IDRiD 
MESSIDOR 

2DFBSE-
FAWT 

Accuracy = 96.5% 
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