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Abstract: This study proposes a deepfake video detection framework leveraging multimodal feature 
fusion and adversarial enhancement to address limitations in single-modality detectors for high-quality 
forgeries and noise interference, systematically integrating cross-modal consistency analysis and 
robustness training through a tri-modal architecture extracting spatio-temporal visual features via 
SlowFast-R50, audio context embeddings using VGGish-BiLSTM, and text semantics through 
Whisper-Transformer, dynamically fused via cross-modal self-attention with adaptive weight allocation, 
while a dual-branch discriminator jointly optimizes classification accuracy and cross-modal consistency 
losses; FGSM-based adversarial training injects perturbations in both RGB frame and audio 

spectrogram domains to enhance robustness against Gaussian/salt-and-pepper noise (σ=0.05/0.02), 
achieving state-of-the-art performance on FaceForensics++ with video-level accuracies of 98.9% 
(DeepFake), 98.8% (FaceSwap), 97.6% (Face2Face), and 92.8% (NeuralTextures), exceeding benchmarks 
like ResNet18 by 1.1–5.1%, maintaining ≥88.5% accuracy under noise and 0.893 ROC-AUC, where 
multimodal fusion captures subtle cross-modal contradictions while adversarial training ensures stable 
decision boundaries near perturbation thresholds. 

Keywords: Adversarial Enhancement, Cross-modal Consistency, Deep Fakes, Multimodal Features, Video Detection. 

 
1. Introduction  

With the rapid development of deep generative algorithms such as generative adversarial networks 
and diffusion models, fake videos based on face replacement and video tampering [1, 2] are becoming 
increasingly rampant in social media and public opinion scenes. Existing single visual detection methods 
mostly rely on frame-level image features or frequency domain analysis. When the quality of fake videos 
[3, 4] continues to improve, the generalization performance and robustness of traditional detectors 
have significantly decreased. At the same time, videos not only contain static image information but also 
audio tracks and implied language semantics. The three have natural temporal and semantic consistency 
in real scenes. The use of cross-modal associations for fake discrimination has achieved initial results. 
Existing research is limited to shallow alignment in cross-modal consistency and has not explored deep 
fusion; adversarial enhancement is mostly focused on image classification and lacks a systematic method 
for video detection. Most studies only stay at the shallow alignment of vision and audio or simple 
strategies based on lip movement-speech synchronization [5, 6] failing to fully explore the potential of 
multimodal deep fusion. In addition, research on the robustness of adversarial samples is mostly focused 
on the field of image classification [7, 8] and there is a lack of systematic methods for adversarial 
enhancement of fake video detection. Therefore, how to balance multimodal consistency analysis and 
anti-adversarial attack capabilities while ensuring high detection accuracy has become a key issue that 
needs to be urgently addressed in the field of deep fake video detection. Although public datasets such as 
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FaceForensics++ [9, 10] provide samples of various types of fakes, the performance of existing models 
on different fake techniques varies significantly, further highlighting the necessity of multimodal and 
adversarial research. 

The core contribution of this study is to systematically construct a trinity framework of multimodal 
fusion-cross-modal consistency-adversarial enhancement for deep fake video detection. This paper 
innovatively uses a cross-modal self-attention mechanism to achieve deep interaction between vision, 
audio, and text, dynamically balances the contribution of the tri-modal through a gated weighted fusion 
module, and constructs a joint representation with temporal alignment capabilities in a 2048-
dimensional feature space. A dual-branch discriminator architecture is proposed. Through the 
consistency discriminant branch, “highly consistent” and “inconsistent” samples are constrained to be 
classified into two categories, and cross-modal temporal correlation and semantic contradictions are 
quantitatively modeled, so that the model’s detection accuracy for high-difficulty fake types such as 
NeuralTextures on the FaceForensics++ dataset is improved. The first multimodal domain adversarial 
training strategy is created, and FGSM perturbations are injected simultaneously in the visual frame 
RGB space and the audio spectrogram domain. By jointly optimizing the classification loss, consistency 
loss, and adversarial loss, the model can still maintain high accuracy under Gaussian noise and salt and 
pepper noise interference, providing a solution that combines accuracy and robustness for fake detection 
in complex scenes. 
 

2. Related Work 
In the field of deep fake video detection, single-modal visual methods have long dominated the 

mainstream. Early studies mainly relied on convolutional neural networks [11, 12] to extract features 
from frame-level images, such as classifiers based on ResNet [13] Xception [14] or Inception 
architectures, which learned facial texture, local distortion, and inter-frame differences to identify fake 
traces. With the rapid improvement of generative adversarial networks [15] and diffusion models [16, 
17] in video generation quality, the detection accuracy and generalization ability of these single-visual 
solutions have significantly decreased. In addition, some studies have attempted to apply temporal 
models [18, 19] to capture continuous changes between frames, but they are still limited by the 
representation ability of visual information itself and are difficult to deal with the subtle disguises of 
high-quality fake videos. To supplement the lack of visual information, in recent years, there has also 
been work that incorporates audio signals [20] into the detection scope. By analyzing lip-speech 
synchronization, the detector can identify abnormal situations where the audio and video are out of 
sync. There are also studies that use the joint encoding of spectrograms and visual features to judge 
authenticity, but most of them stay at the shallow level of splicing or simple weighting, lacking 
systematic mining of the deep coupling relationship between modalities. 

In contrast, multimodal and cross-modal detection methods have gradually emerged in recent years. 
Some scholars combine the three signals of vision, audio, and text into the classifier through early or 
late fusion strategies and verify the advantages of multimodal fusion [21, 22] on synthetic datasets or 
actual recorded videos. Other studies apply cross-modal consistency loss based on contrastive learning 
or two-stream networks [23, 24] to measure the correspondence between different modal features at 
the temporal and semantic levels. However, these methods usually ignore the impact of adversarial 
samples on the robustness of detectors and do not fully consider the interference caused by adversarial 
perturbations during the training stage. In addition, adversarial training has been widely studied in the 
field of image classification and object detection, but few works have applied its system into the 
framework of deep fake video detection. Therefore, combining multimodal fusion with adversarial 
training to enhance the model’s dual defense capabilities against high-quality fakes and adversarial 
attacks has become a key direction of current research. 

Adversarial training technology has made significant progress in the field of image classification 
[25, 26] but its application in deepfake video detection [27, 28] is still in its infancy. Existing research 
focuses on the generation and defense of unimodal adversarial samples, lacking a systematic solution for 
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multimodal joint attacks. Research on injecting perturbations in the visual frame or audio spectrum 
domain through the fast gradient sign method only stays at the data enhancement level, and fails to 
deeply explore the enhancement mechanism of adversarial training on the cross-modal feature 
alignment ability. In addition, traditional adversarial training strategies [29, 30] often ignore the 
particularity of temporal consistency constraints in video detection tasks, resulting in unstable decision 
boundaries when facing multimodal collaborative attacks. At present, it is urgent to establish a joint 
framework that integrates adversarial perturbation modeling and cross-modal consistency verification, 
and to simultaneously optimize the spatial alignment ability of visual-audio-text features during the 
training phase by designing a multimodal collaborative adversarial loss function [31, 32]. This dual 
enhancement strategy not only improves the model’s sensitivity to high-precision forgery techniques 
[33, 34] but also significantly improves the model’s robustness in noise interference scenarios by 
learning the smoothness of the decision boundaries of adversarial samples. 
 

3. Methods 
3.1. Overall Method Architecture 
 
The method architecture of this paper is shown in Figure 1. 
 

 
Figure 1.  
Method architecture of this paper. 

 
This study proposes a deep fake video detection framework that integrates multimodal features and 

adversarial enhancement, and achieves efficient detection through cross-modal consistency analysis and 
robustness training. Multimodal feature extraction is performed on the input video: the visual modality 
uses the SlowFast-R50 network pre-trained by Kinetics-400 to capture spatio-temporal dynamic 
features, and uses a dual-path structure to model appearance details and motion information 
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respectively. The audio modality extracts Mel spectrogram features through the VGGish network and 
then connects to Bi-LSTM to capture temporal context dependencies. The text modality uses Whisper 
ASR to generate sentence-by-sentence subtitles, and the Transformer encoder parses the semantic 
vector. Then, a cross-modal self-attention mechanism is designed to deeply interact with the tri-modal 
features, and the contribution weights of vision, audio, and text are dynamically adjusted through the 
gated weighted fusion module to construct a joint feature representation with temporal alignment 
capabilities. On this basis, a dual-branch discrimination system is constructed: the main classifier 
completes the true and false binary classification based on the fusion features, and the consistency 
discriminator mines the temporal correlation and semantic contradiction between cross-modal features 
through an adversarial learning strategy. The two share the backbone network and achieve feature 
complementary optimization through a joint loss function. To enhance the model’s robustness, the 
FGSM adversarial training method is used to simultaneously inject controllable perturbations in the 
visual frame RGB space and the audio spectrogram domain, and the optimization direction of the 
original sample and the adversarial sample is balanced through a hybrid loss function. 
 
3.2. Multimodal Feature Extraction 

To achieve comprehensive perception of deep fake videos [35, 36]. This method uses modular and 
scalable deep encoders on three information streams: visual, audio, and text, and refines the temporal 
and spatial information. 

For the visual stream, SlowFast-R50 spatio-temporal feature encoding is used, which can take into 

account both high-level semantics and low-level motion details. Given an input video {𝑥𝑡}𝑡=1
𝑇  of length 

T frames, each frame is center-cropped and scaled to 256 × 256, denoted as 𝑥𝑡
′. 

The sampling strategy is expressed as: 

𝑋slow = {𝑥𝑡
′ ∣ 𝑡 = 1,1 + 𝛼𝑠, 1 + 2𝛼𝑠, … }                  (1) 

In Formula 1, 𝛼𝑠 = 8. 

𝑋fast = {𝑥𝑡
′ ∣ 𝑡 = 1,1 + 𝛼𝑓 , 1 + 2𝛼𝑓 , … }                      (2) 

In Formula 2, 𝛼𝑓 = 32. 

The Slow branch and the Fast branch each generate feature maps 𝐹slow ∈ ℝ
𝑇

𝑎𝑠
×7×7×1024

 and 𝐹fast ∈

ℝ
𝑇

𝛼𝑓
×7×7×1024

 through a 5-layer ResNet-50 residual block (including bottleneck structure). 

Vectors fslow, ffast ∈ ℝ1024 are obtained by spatio-temporal global average pooling and 
concatenated by dimensions: 

𝐹𝑣 = [fslow; ffast] ∈ ℝ2048(3) 
This fusion retains the advantages of the slow branch in understanding the background and scene, 

while strengthening the fast branch’s ability to capture facial micro-expressions and movements. 
The parameters of SlowFast-R50 are shown in Table 1. 

 
Table 1.  
SlowFast-R50 parameters. 

Parameters Value Function 

Input resolution 256 × 256 Unify frame size, balance efficiency and details 
Slow sampling rate 8 Capture global semantics and scene dynamics 

Fast sampling rate 32 Capture fine-grained motion and micro-expressions 
Number of residual block layers 5-layer Bottleneck Deep semantic extraction and gradient flow stability 

Channel dimension 1024 Ensure feature expression capacity 
Global pooling output dimension 1024 (per branch) Spatial dimension reduction, generate fusion pre-vector 

Feature dimension after concatenation 2048 Gather slow/fast branch information for subsequent fusion 

 
According to the time-frequency characteristics of the audio signal, the Mel frequency domain 

conversion is performed, and then the long-term and short-term dependencies are modeled with the 
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help of pre-trained convolutional networks and bidirectional temporal networks. The original waveform 
resampled to 16 kHz is subjected to the short-time Fourier transform: 

𝑋[𝑡, 𝑘] = ∑  𝑁−1
𝑛=0 𝑥[𝑛 + 𝑡𝐻]𝑤[𝑛]𝑒−

𝑗2𝜋𝑘𝑛

𝑁                        (4) 

In Formula 4, 𝑥[𝑛] is the original waveform; 𝑁 = 400; 𝐻 = 160. 
The Mel filtering and logarithmic energy spectrum are: 

𝑆mel(𝑡, 𝑚) = log(∑  𝑁−1
𝑘=0 |𝑋[𝑡, 𝑘]|2𝐻𝑚(𝑘) + 𝜖)                  (5) 

In Formula 5, 𝐻𝑚(𝑘) is the m-th Mel filter response, and 𝜖 = 10−6 is used for numerical stability. 

The Mel-spectrogram with a shape of 𝑇𝑎 × 64 is input into the VGGish network (6 layers of 

convolution + 2 layers of full connection) to obtain a 128-dimensional embedding {𝑒𝑡}𝑡=1
𝑇𝑎  for each 

frame. 

{𝑒𝑡} is further input into the bidirectional LSTM: 

ℎ⃗ 𝑡 = LSTM⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝑒𝑡, ℎ⃗ 𝑡−1)                    (6) 

h⃖⃗𝑡 = LSTM⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (𝑒𝑡 , h⃖⃗𝑡+1)                        (7) 
Finally, the hidden states at both ends are concatenated to obtain the full sentence-level context 

feature: 

𝐹𝑎 = [ℎ⃗ 𝑇𝑎
; ℎ⃗⃖1] ∈ ℝ512 (8) 

The parameters of VGGish + Bi-LSTM are shown in Table 2. 
 
Table 2.  
VGGish + Bi-LSTM parameters. 

Parameters Value Function 
Audio sampling rate 16 kHz Ensure the accuracy of speech details and spectrum 
Window length/stride 25 ms / 10 ms Get the balance of time-frequency resolution 

Number of Mel filters 64 
Extract the frequency bands related to human ear 
perception 

VGGish embedding dimension 128 Generate frame-level high-level semantic representation 

Number of Bi-LSTM hidden units 256 
Model the long-term and short-term temporal 
dependencies of audio 

Context feature dimension 512 
Gather forward and backward information to enhance 
semantics 

Activation function 
ReLU (Rectified Linear 

Unit) 
Introduce nonlinearity to prevent sparse expression 

 
The text stream relies on the subtitles generated by end-to-end speech recognition and extracts 

high-level semantics through a multi-layer self-attention network. The Whisper model is used to 

transcribe the audio into a text sequence with timestamps and then split into sentences {𝑠𝑖}𝑖=1
𝑀  at 1-2 s 

intervals. 

Each sentence 𝑠𝑖 is input into the WordPiece word segmentation map to a token sequence {𝑤𝑖,𝑗}, 
which is mapped to the vector space by the shared embedding matrix: 

w𝑖,𝑗 = 𝐸WP(𝑤𝑖,𝑗) + 𝑃𝐸𝑗(9) 

The calculations of the l-th layer of Transformer is: 

𝑄 = 𝑊𝑄𝑊(𝑙−1)                   (10) 

𝐾 = 𝑊𝐾𝑊(𝑙−1)                          (11) 

𝑉 = 𝑊𝑉𝑊(𝑙−1)(12) 

Attn(𝑄, 𝐾, 𝑉) = softmax(
𝑄𝐾⊤

√𝑑𝑘
)𝑉                    (13) 

MultiHead(𝑊(𝑙−1)) = Concat(Attn1, … , Attn𝐻)𝑊𝑂             (14) 

𝑊(𝑙) = LayerNorm(𝑊(𝑙−1) + MultiHead(𝑊(𝑙−1)))              (15) 
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In Formulas 10-15, H is 8; the dimension of each head is 𝑑𝑘 = 𝑑𝑣 = 64; the model width is 

𝑑𝑚𝑜𝑑𝑒𝑙 = 512. 
The output of the L-th layer is average pooled in the temporal dimension to obtain: 

𝐹𝑡 =
1

𝑁𝑖
∑  

𝑁𝑖
𝑗=1 𝑊𝑖,𝑗

(𝐿)
∈ ℝ768                          (16) 

In Formula 16, 𝑁𝑖 is the number of tokens in the i-th sentence. 
The parameters of the Transformer text encoder are shown in Table 3. 
 
Table 3.  
Transformer text encoder parameters. 

Parameters Value Function 
Number of layers 6 Control model depth and expressiveness 
Number of heads 8 Capture multiple subspace semantics in parallel 

Model dimension 512 Unify vector dimensions 
Feedforward network dimension 2048 Strengthen feature nonlinear transformation 

Dropout 0.1 Relieve overfitting of deep networks 

 
In the tri-modal feature fusion stage, the temporal features of the three streams of vision, audio, and 

text are linearly projected to obtain their respective query, key, and value vectors. For each pair of 
modalities, the attention weight is calculated: 

Attn(𝑄𝑣 , 𝐾𝑎, 𝑉𝑎) = softmax(
𝑄𝑣𝐾𝑎

⊤

√𝑑𝑘
)𝑉𝑎                  (17) 

By calculating the attention of visual query and audio key/value, as well as the combination of 
vision and text, audio and text, etc., the complementary information and association patterns between 
different modalities are captured. To adaptively distribute the importance of the three modalities, a 
lightweight gating network is added before the fusion output: 

[𝛼𝑣 , 𝛼𝑎 , 𝛼𝑡] = softmax(𝑊𝑔[𝐹̅𝑣; 𝐹̅𝑎; 𝐹̅𝑡] + 𝑏𝑔)                  (18) 

𝐹fuse(𝑡) = 𝛼𝑣𝐹𝑣(𝑡) + 𝛼𝑎𝐹𝑎
(𝑣)

(𝑡) + 𝛼𝑡𝐹𝑡
(𝑣)

(𝑡)                (19) 

In Formulas 18-19, 𝐹̅𝑣, 𝐹̅𝑎, and 𝐹̅𝑡 are the semantic vectors obtained by global averaging of the three 

modalities; 𝑏𝑔 is the parameter of the gating network; 𝛼 satisfies ∑𝛼 = 1 after softmax normalization. 

Finally, the fused feature matrix is obtained: 

𝐹fuse = [𝐹fuse(1), 𝐹fuse(2),… , 𝐹fuse(𝑇)] ∈ ℝ𝑇×𝐷                          (20) 

In Formula 20, 𝐷 is the dimension of the fused feature, which not only retains the deep interaction 
between the modalities but also realizes dynamic weight allocation through the gating mechanism. 
 
3.3. Cross-modal Consistency Discriminator 

To quantify the cross-modal temporal consistency of the fused feature sequence, the fused temporal 

feature 𝐹fuse is bidirectionally aggregated by GRU (Gated Recurrent Unit): 

ℎ⃗ 𝑡 = GRU⃗⃗⃗⃗ ⃗⃗ ⃗⃗  (𝐹fuse(𝑡), ℎ⃗ 𝑡−1)                                           (21) 

ℎ⃖⃗𝑡 = GRU⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗(𝐹fuse(𝑡), h⃖⃗𝑡+1)                                              (22) 
The hidden states of the forward at the last moment and the backward at the first moment are 

concatenated to obtain the temporal aggregation vector, which is passed through a two-layer fully 
connected classifier: 

𝑧1 = ReLU(𝑊1ℎ + 𝑏1)                             (23) 

𝑧1
′ = Dropout(𝑧1, 𝑝 = 0.5)                      (24) 

ℓ = 𝑊2𝑧1
′ + 𝑏2                                              (25) 

𝑝 = Softmax(ℓ)                                              (26) 

In Formulas 23-26, 𝑊1 ∈ ℝ256×512; 𝑊2 ∈ ℝ2×512; the output 𝑝 represents the predicted probability 
of “highly consistent” (label=1) and “inconsistent” (label=0). 
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Positive sample (consistent): visual-audio-text fusion features of the same video and the same 
timestamp. 

Negative sample (inconsistent): random pairing across videos or misaligned pairing within the same 

video (time offset exceeds 0.5 s). 
The consistency loss uses binary cross entropy, and the formula is: 

ℒcons = −
1

𝑁
∑ [

𝑁

𝑖=1
𝑦𝑖log 𝑝𝑖 + (1 − 𝑦𝑖)log (1 − 𝑝𝑖)]                              (27) 

In parallel with the consistency branch, a fake classifier is built on the same trunk, which also 
consists of two fully connected layers: 

ℓforgery = 𝑊4Dropout(ReLU(𝑊3ℎ + 𝑏3)) + 𝑏4                                (28) 

𝑝forgery = Softmax(ℓforgery)                                                           (29) 

 
3.4. Adversarial Training Strategy 

To improve the robustness of the model to small perturbations, FGSM is applied to generate 
adversarial samples at the data level: 

𝑥′ = 𝑥 + 𝜖sign(∇𝑥ℒtotal(𝑥, 𝑦))                       (30) 
After generating adversarial samples, the consistency and fake classification losses are recalculated. 

Finally, the total loss of the model is the weighted sum of the original sample and adversarial sample 
losses: 

ℒtotal = ℒforgery + 𝜆ℒcons + 𝛼(ℒforgery
adv + 𝜆ℒcons

adv )                                  (31) 

In Formula 31, 𝜆 = 0.5, and 𝛼 = 1.0. By adding normal and adversarial samples to each training 
batch and jointly optimizing the above joint loss, it is ensured that the model has good defense 
capabilities against data-level perturbations while maintaining high classification accuracy. 
 

4. Experimental Design 
4.1. Dataset 

This study uses the FaceForensics++ [37, 38] dataset, which is built for deep fake video detection 
tasks [39, 40] and contains four typical fake methods: DeepFake, FaceSwap, Face2Face, and 
NeuralTextures, as well as the corresponding original real videos. Each fake method has rich samples at 
different resolutions. This study uses the original resolution version to maximize the retention of fake 
details and ensure that the feature extraction module can capture high-quality spatio-temporal and 
texture information. 
The dataset image of FaceForensics++ is shown in Figure 2. 
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DeepFake

FaceSwap

Face2Face

NeuralTextures

Real

 
Figure 2.  
Data image display. 

 
In the data preprocessing stage, face detection and alignment are performed on each video to ensure 

that the face in the input frame is in the center of the picture and scaled to 256×256 size. A fixed-
interval frame sampling strategy is adopted: one frame is extracted every 10 frames, and 32 key frames 
are evenly extracted from each video to construct a frame sequence input of uniform length. This 
sampling method not only takes into account the coverage of the video time series but also controls the 
amount of calculation to avoid excessive redundancy. The corresponding audio stream is segmented 
according to the above frame timestamps and aligned with the visual frames one by one to ensure the 
synchronous extraction of tri-modal features. 

To evaluate the model’s generalization and stability, all extracted video samples are divided into 
training set, validation set, and test set in a ratio of 5:1:1, and strictly balanced on the fake category to 
ensure that each fake type and the original real video are distributed consistently in each subset. Mild 
data enhancement (random horizontal flip, color jitter) and audio random noise injection are applied into 
the training set to improve the model’s robustness to environmental changes and noise interference. 
The validation set and the test set only retain the necessary alignment processing and strictly restore 
the real usage scene, so as to objectively and impartially evaluate the method’s performance. 

The distribution of the number of images in the dataset is shown in Table 4. 
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Table 4.  
Distribution of the number of images. 

Dataset DeepFake FaceSwap Face2Face NeuralTextures 

Training set 
Real 24685 24686 24687 24688 
Fake 25565 25566 25567 25568 

Validation set 
Real 4937 4937 4937 4937 
Fake 5113 5114 5115 5116 

Test set 
Real 4937 4937 4937 4937 
Fake 5113 5114 5115 5116 

Total 70350 70354 70358 70362 

 
4.2. Experimental Environment and Evaluation Indicators 

This experiment is conducted in a single-machine multi-card environment, using mainstream deep 
learning frameworks and standard training configurations to ensure the reproducibility and 
comparability of the results. In terms of hardware, 4 NVIDIA Tesla V100s (32 GB of video memory per 
card) are used, along with Intel Xeon processors and sufficient memory to achieve efficient parallel 
computing. The software uses Python, using the AdamW optimizer and Cosine Annealing learning rate 
scheduling to balance convergence speed and generalization ability. The training hyperparameters are 
set to batch size 16, and a total of 50 epochs are trained, taking into account training time and model 
performance. 

The experimental environment is shown in Table 5. 
 
Table 5.  
Experimental environment. 

Parameters Vlaue Function 
Compute device 4×NVIDIA Tesla V100 Supports large-scale parallel tensor operations and model training 

Memory 128 GB Multi-process loading guarantee 
Operating 
system 

Ubuntu 20.04 
Stable Linux environment, compatible with mainstream deep learning 
dependencies 

Python version 3.8 Supports modern deep learning libraries and tool chains 

Optimizer AdamW 
Adaptive learning rate and weight decay to improve convergence and 
generalization 

Learning rate 
schedule 

CosineAnnealing 
Smooth annealing learning rate decay to prevent falling into local 
optimality 

 
In the task of fake video detection [41, 42] the model evaluation index needs to comprehensively 

measure its classification performance, robustness, and generalization ability. The evaluation indicators 
include accuracy, precision, recall, ROC curve, and AUC. 

Accuracy is used to measure the model’s overall classification ability, which is defined as the ratio of 
the number of samples predicted correctly to the total number of samples: 

Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                 (32) 

Precision reflects how many of the samples predicted as positive by the model are true positive 
examples, which measures the false positive rate: 

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                   (33) 

Recall measures the ability of the model to detect all true positive examples, that is, how many of all 
positive samples are successfully identified: 

Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                        (34) 

The F1 calculation formula is: 

𝐹1 =
2∙𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∙𝑅𝑒𝑐𝑎𝑙𝑙

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙)
                                            (35) 

The ROC curve depicts the relationship between the true positive rate and the false positive rate at 
different judgment thresholds: 



1351 

 

 

Edelweiss Applied Science and Technology 
ISSN: 2576-8484   

Vol. 9, No. 6: 1342-1359, 2025 
DOI: 10.55214/25768484.v9i6.8119 
© 2025 by the authors; licensee Learning Gate 

 

TPR =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                         (36) 

FPR =
𝐹𝑃

𝐹𝑃+𝑇𝑁
                                            (37) 

AUC refers to the area under the ROC curve, with a range of [0,1], indicating the model’s ability to 
rank positive and negative samples: 

AUC = ∫  
1

0
TPR(𝑥)𝑑𝑥                                                    (38) 

 
4.3. Adversarial Test Scenes 

To fully verify the model’s ability to defend against cross-modal adversarial attacks, two types of 
attack scenes are designed: white-box attack (the attacker fully understands the model structure and 
parameters) and black-box attack (the attacker can only access the model input/output). Both types of 
attacks inject perturbations synchronously into the visual frame color space and the audio spectrogram 
domain to simulate the threat of multimodal joint attacks. 

This study designs a systematic adversarial test scene to comprehensively evaluate the model’s 
robustness. The white-box attack uses two typical methods, FGSM and PGD (Projected Gradient 
Descent), to synchronously inject perturbations into the visual frame RGB space and the audio 
spectrogram domain. The FGSM generates single-step adversarial perturbations based on the model 

gradient, and the attack parameters are set to ε=0.03 (visual frame) and ε=0.015 (audio spectrogram), 
strictly following the human perception threshold constraint of L∞≤8/255; PGD achieves multi-step 

optimization perturbation enhancement through iterative attacks (10 iterations, step size α=ε/4), 
focusing on verifying the model’s defense capabilities against high-intensity iterative attacks. Both types 
of attacks cover single-modal (independent visual/audio perturbations) and multimodal joint attacks 
(visual-audio collaborative perturbations) scenes, and the model defense effect is quantified by the 

accuracy drop (ΔAcc). 
The black-box attack adopts the transfer attack paradigm and selects ResNet18 (visual backbone) 

and EfficientNet CrossViT (cross-modal fusion model) as alternative models to generate adversarial 

samples. The attack parameters are consistent with the white-box scene (ε=0.03 visual/ε=0.015 audio). 
 

5. Results 
5.1. Comparison with Mainstream Models 

The model in this paper is compared with ResNet18, ShuffleNet, MobileNet, Convolutional ViT 
(Vision Transformer), and EfficientNet CrossViT. The performance of the model is measured by 
accuracy and number of parameters. The results are shown in Table 6. 
 
Table 6.  
Model accuracy and number of parameters. 

Model DeepFake FaceSwap Face2Face NeuralTextures Parameter quantity (M) 
ResNet18 0.978 0.978 0.967 0.877 11.65 
ShuffleNet 0.967 0.951 0.934 0.792 1.23 

MobileNet 0.964 0.965 0.954 0.845 3.21 
Convolutional ViT 0.942 0.867 0.768 0.712 87.98 

EfficientNet CrossViT 0.932 0.912 0.945 0.704 101.22 

This paper model 0.989 0.988 0.976 0.928 64.12 

 
As can be seen from Table 6, the accuracy of this paper’s model on the four types of fakes is 

significantly ahead of all the comparison models: it reaches 0.989 and 0.988 on DeepFake and FaceSwap, 
respectively, which are 1.1% and 1.0% higher than ResNet18; it is 0.9% and 5.1% higher on Face2Face 
and NeuralTextures, respectively. Although the number of parameters of this paper’s model (about 
64.12M) is higher than that of lightweight networks (such as ShuffleNet’s 1.23M and MobileNet’s 
3.21M), it is still smaller than Convolutional ViT (87.98M) and EfficientNet CrossViT (101.22M). This 
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shows that the multimodal fusion and cross-modal consistency discrimination mechanism can fully 
exploit the complementary advantages of visual, audio, and text information while controlling the 
growth of parameters, thereby significantly improving classification accuracy. Especially in 
NeuralTextures, the most challenging type of fake, traditional pure visual models generally perform 
poorly (the highest is only 0.877). However, by adding audio and text consistency discrimination and 
adversarial enhancement, the model in this paper has stronger robustness to subtle fake traces, thus 
achieving a high accuracy of 0.928. 

The parameter-accuracy ratio (Accuracy/Params) is an important indicator for evaluating the 
practical value of a model. Taking the model in this paper as an example, its parameter volume is only 
about 63% of EfficientNet CrossViT, but its accuracy is much higher. The reasons are: first, the 

multimodal feature extraction module (SlowFast, VGGish+Bi-LSTM, Whisper→Transformer) can 
capture hidden traces of fake videos from different angles; second, the cross-modal self-attention fusion 
and the adaptive weight allocation of the gating mechanism effectively focus on the most discriminative 
modal information; third, the additional cross-modal consistency discriminator and FGSM adversarial 
training strategy enable the model to not only identify fakes in normal modes but also resist small 
perturbations and noise interference, ensuring robust detection capabilities in a variety of scenes and 
fake techniques. This combination enables the model in this paper to achieve the best balance between 
accuracy and parameter quantity, fully demonstrating the potential of multimodal fusion and adversarial 
enhancement in deep fake video detection. 
In the NeuralTextures dataset, the ROC comparison is shown in Figure 3. 
 

 
Figure 3.  
ROC curve. 

 
The ROC-AUC comparison results on the NeuralTextures subset show that the proposed model 

leads with a score of 0.893, followed by ResNet18 (0.843), MobileNet (0.821), ShuffleNet (0.765), 
Convolutional ViT (0.724), and EfficientNet CrossViT (0.711). Although visual backbone networks such 
as ResNet18 and MobileNet perform well on general fake types, their single frame-level features make it 
difficult to distinguish the subtle fake traces of NeuralTextures in material details and lighting effects. 
ShuffleNet is limited by its lightweight design and insufficient capacity, resulting in a significant lack of 
expression of detailed features. Although the ViT series models have a global attention mechanism, they 
are prone to texture overfitting due to excessive reliance on visual patterns in the absence of audio and 
text assistance, resulting in a low recognition rate for complex fake mismatches of NeuralTextures. 
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The significant advantage of the proposed model comes from the deep integration of two key 
factors. Firstly, the cross-modal self-attention fusion mechanism breaks the limitation of single vision 
and interacts the spatio-temporal visual features captured by SlowFast with the audio context extracted 
by VGGish+Bi-LSTM and the semantic information encoded by Transformer at the attention level, so 
that the model can precisely capture the slight asynchrony between the sound rhythm and visual action 
and the potential contradiction between semantics and expression, so as to more sensitively identify the 
flaws of NeuralTextures in rendering details and sound-image alignment. Secondly, the FGSM data-
level adversarial training strategy effectively constructs difficult samples “near the decision boundary” 
by injecting small perturbations in the visual frame and audio spectrum domain, so that the model can 
still maintain stable classification capabilities in the face of slight noise and adversarial interference. The 
synergy of the two not only improves the discrimination performance of standard fake samples but also 
significantly enhances the model’s generalization and robustness to high-difficulty fake types, thus 
achieving industry-leading results in the ROC-AUC indicator. 
 
5.2. Noise Robustness 

To verify the robustness of the model, Gaussian noise (σ=0.05) and salt and pepper noise (noise 
density=0.02) are added to the test set, and the accuracy under the influence of noise is statistically 
analyzed to evaluate the model’s stability under noise interference. The noise robustness results are 
shown in Figure 4. 
 

 
Figure 4.  
Noise robustness. 

 
Figure 4 (a). Gaussian noise 
Figure 4 (b). Salt and pepper noise 

After applying Gaussian noise with σ=0.05, the accuracy of all models decreases to varying 
degrees, but the degree of decrease is significantly different. The average accuracy of ResNet18 in the 
four types of fake is 0.904, of which NeuralTextures is greatly affected; ShuffleNet and MobileNet have 
fewer parameters and are sensitive to noise, and their accuracy drop to 0.742 and 0.817 on 
NeuralTextures respectively; Convolutional ViT and EfficientNet CrossViT have larger capacity, but 
because they only rely on visual features, the noise destroys the texture and edge information, resulting 
in the NeuralTextures retention rate of only 0.672 and 0.661. In contrast, the accuracy of the model in 
this paper can still be maintained at 0.982/0.980/0.968/0.902 under the same noise conditions, which is 
higher than all the compared models. The reason is that cross-modal fusion can call on redundant audio 
and text information to compensate for the loss when the visual flow is disturbed, and the adversarial 
training strategy enables the model to learn how to resist Gaussian disturbances during training, so 
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that the decision boundary is smoother, and the ability to resist noise interference is significantly 
enhanced. 

In the salt and pepper noise scene with a noise density of 0.02, the discrete bright and dark pixels 
seriously destroy the local structure, causing the performance of all visual backbone models to further 
decline. ResNet18 and ShuffleNet can only reach 0.785 and 0.705 on NeuralTextures respectively; 
MobileNet is slightly better, at 0.791; the ViT series model still performs the worst, at 0.651 and 0.637, 
respectively. It can be seen that the model that relies solely on visual features and has not undergone 
adversarial training almost loses its sensitivity to subtle fake traces when facing severe pixel 
perturbations. The model in this paper still maintains a high accuracy of 0.972/0.970/0.956/0.885 
under the same conditions, indicating that the cross-modal consistency discriminator can filter out the 
interference of isolated noise on the discrimination, and FGSM adversarial training simultaneously 
injects discrete perturbations in the visual and audio spectrum domains, so that the model has seen 
similar noises in training and can quickly restore stable predictions. The combination of the two 
effectively improves the robustness to high-intensity random noise and verifies the superiority of 
multimodal and adversarial enhancement strategies in actual interference scenes. 
 
5.3. Adversarial Test Results 

The adversarial test results are shown in Figure 5. 
 

 
Figure 5.  
Adversarial test results. 

 

ΔAcc is calculated as the difference in accuracy after and before the adversarial test. The results in 
Figure 5 verify the robustness advantage of the model in this paper under cross-modal consistency 
constraints and adversarial training through adversarial testing. Experimental data shows that in the 

face of FGSM single-step perturbation in white-box attacks, the ΔAcc of the model on four types of fake 
videos, DeepFake, FaceSwap, Face2Face, and NeuralTextures, are -0.053, -0.055, -0.067, and -0.072, 
respectively, indicating that the cross-modal fusion mechanism effectively suppresses the impact of 
single-modal perturbation on the overall decision. Among them, NeuralTextures has a relatively large 

absolute value of ΔAcc but is still within an acceptable range because the fake traces are highly 
dependent on visual-audio synchronization. 

PGD iterative attack approaches the optimal perturbation direction through multi-step 

optimization, resulting in ΔAcc of the four datasets of -0.108, -0.112, -0.135, and -0.156, respectively, 
but the model still maintains the detection accuracy through the gradient mask defense strategy. Under 
the transfer attack paradigm, when the adversarial samples generated by ResNet18 and EfficientNet 

CrossViT attack the model in this paper, ΔAcc only reaches -0.041, -0.043, -0.056, and -0.064, 
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respectively, indicating that the decision boundary of the model after adversarial training has stronger 
smoothness and generalization defense capabilities, and the cross-modal consistency discriminator 
realizes a multimodal redundancy compensation mechanism through dynamic weight allocation (such as 
gated weighted fusion). When the visual or audio modality is disturbed, the contribution weight of the 
undamaged modality is increased, thereby alleviating the impact of single-modal attacks on the overall 
performance. 
 
5.4. Data Modal 

To analyze the impact of data modal, single-modal (visual V, audio A, text T), bi-modal (V+A, V+T, 
A+T), and tri-modal V+A+T are compared, and the results are shown in Figure 6. 
 

 
Figure 6.  
Data modal analysis results. 

 
From the results in Figure 6, it can be seen that the single-modal vision (V) achieves an accuracy of 

nearly 0.980 on DeepFake, FaceSwap, and Face2Face, but drops to 0.877 on NeuralTextures, reflecting 
that a single frame-level visual feature is difficult to capture the details of high-difficulty material 
rendering fakes. The audio (A) modal only relies on voiceprint and speaking rhythm information, and 
the detection accuracy for DeepFake and FaceSwap is 0.865 and 0.860, respectively; it is more 
significant for Face2Face and NeuralTextures, dropping to 0.842 and 0.734, respectively, indicating that 
although the synchronization errors and acoustic distortions hidden in the audio can assist in detection, 

the overall discrimination ability is still limited. The text (T) modal is based on ASR→Transformer 
sentence-level semantic encoding, and the accuracy of DeepFake, FaceSwap, and Face2Face is improved 
to 0.912, 0.905, and 0.893, reflecting that semantic clues have complementary value in detecting speech 
content fake and lip movement mismatch, but it is still only 0.812 on NeuralTextures. 

After the application of bi-modal fusion, the performance is significantly improved: vision + audio (V 
+ A) jumps to 0.901 on NeuralTextures; vision + text (V + T) further reaches 0.918, indicating that the 
alignment of text semantics and visual expressions can more accurately capture subtle inconsistencies in 
deep fakes; although audio + text (A + T) is not as good as the combination with vision, it still reaches 
0.942 on DeepFake and 0.857 on NeuralTextures, which exceeds the linear sum of single audio and text, 
verifying the effectiveness of cross-modal information complementarity. In general, bi-modal fusion can 
approach the overall performance on most fake types, but a tri-modal is still needed to achieve a near-
perfect detection rate. 

The tri-modal (V + A + T) model achieves the highest accuracy on all fake types: DeepFake 0.989, 
FaceSwap 0.988, Face2Face 0.976, NeuralTextures 0.928. This improvement is attributed to the deep 
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coordination of the three-stream information at two levels: cross-modal self-attention fusion can 
adaptively adjust the contribution of vision, audio, and text according to different video scenes through 
the Query–Key–Value mechanism and dynamic weight allocation. For high-difficulty fakes such as 
NeuralTextures, the subtle rendering artifacts captured by the visual stream are often accompanied by a 
slight synchronization deviation between the audio and text. The fusion module strengthens the 
consistency detection of audio and text at this moment, so that accurate judgment can still be made 
when the visual is difficult to distinguish. 

Adversarial training makes the model stable under disturbances such as Gaussian noise and FGSM, 
further strengthening the robust fusion of tri-modal information. Adversarial training not only 
simulates the most confusing fake and noise interference in the training stage but also forces the model 
to build a smoother decision boundary, strengthening the compensation effect of weak modal branches 
in strong noise scenes. For example, when the visual frame is damaged by noise, the audio and text 
branches can continue to maintain high discrimination ability through pre-learned language-rhythm 
correspondence and semantic-expression mapping; vice versa. It can be seen that the dual mechanism of 
tri-modal deep fusion and adversarial training significantly improves the generalization and robustness 
of the model in various fake scenes, providing solid technical support for high-precision and practical 
deep fake video detection. 
 
5.5. Ablation Experiment 

The ablation experiment is set up in the NeuralTextures dataset to analyze the impact of each part 
of the model in this paper on the performance, including AT (adversarial training) and CD (consistency 
discriminator). The ablation experiment results are shown in Figure 7. 
 

 
Figure 7.  
Ablation experiment results. 

 
From the ablation experiment results, after removing the consistency discriminator, the model 

precision drops from 0.928 to 0.905; the recall drops from 0.907 to 0.886; the F1 score drops from 0.917 
to 0.895. This shows that the consistency discriminator plays a key role in reducing the false positive 
rate: through the binary classification constraints of “high consistency” and “inconsistency”, the model 
can more accurately identify the fake traces caused by abnormal cross-modal alignment, thereby 



1357 

 

 

Edelweiss Applied Science and Technology 
ISSN: 2576-8484   

Vol. 9, No. 6: 1342-1359, 2025 
DOI: 10.55214/25768484.v9i6.8119 
© 2025 by the authors; licensee Learning Gate 

 

significantly improving the precision. The slight decrease in recall shows that although the consistency 
discriminator enhances the model’s sensitivity to cross-modal differences, in some borderline cases, a 
small number of real fake videos may be misclassified as inconsistent, resulting in a slight decrease in 
recall. Overall, the addition of the consistency discriminator enables the model to effectively compress 
false positives while maintaining high recall, which is of great significance to improving detection 
reliability. 

Furthermore, when both adversarial training and the consistency discriminator are removed at the 
same time, the precision drops further to 0.888; the recall drops to 0.856; the F1 score drops to 0.872. 
This comparison highlights the core value of FGSM data-level adversarial training in strengthening the 
model’s ability to resist disturbances: adversarial training enables the model to learn to deal with tiny 
noise and adversarial perturbations by constructing difficult samples that approximate the decision 
boundary, thereby maintaining higher recall and precision when facing detail fakes such as 
NeuralTextures. Compared with the F1 of 0.917 of the complete model, the F1 of the model without 
adversarial training drops significantly, indicating that adversarial enhancement is crucial to 
maintaining high overall detection performance. In addition, the synergistic effect of the consistency 
discriminator and adversarial training is particularly significant: the former provides structured 
constraints on cross-modal consistency metrics, and the latter approaches the optimal discrimination 
boundary under data-level perturbations. The combined effect of the two enables the model to achieve 
the highest precision and recall on NeuralTextures, reaching 0.928/0.907, verifying the effectiveness of 
the joint design of multimodal fusion and adversarial enhancement. 
 

6. Conclusions 
This study proposes a deep fake video detection framework that integrates visual, audio, and text 

tri-modal features with adversarial training, achieving industry-leading detection performance 
(maximum accuracy 0.989) on the FaceForensics++ dataset, and significantly improving the model’s 
sensitivity to cross-modal temporal consistency anomalies through cross-modal self-attention 
mechanism and dual-branch discriminator. Its core contribution lies in the systematic integration of 
multimodal deep feature interaction and adversarial defense mechanism, solving the performance 
bottleneck of traditional single-modal methods under high-quality fake and noise interference, and 
providing technical support for content review and public opinion security on social platforms. 
However, the research is still limited by specific fake type datasets (such as the lack of samples 
generated by the latest diffusion model) and high computational costs. Future can explore lightweight 
multimodal fusion architectures, apply more modals (such as physiological signals), and optimize 
detection strategies for new generation technologies to cope with the rapidly evolving threat of deep 
fakes and promote the practical and universal development of detection technology. 
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